Series Circuits

Objectives:

Identify a series circuit.
Calculate total resistance in a series circuit.
Calculate current in a series circuit.
Calculate voltage drops across resistance.
Measure current values in a series circuit.
Measure voltage drops in a series circuit.

Series Circuit: Circuit with only one path for current to flow.

Total Resistance: Sum of all resistors.
$\mathrm{R}_{\mathrm{T}}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\ldots$
Total Current: Same throughout the circuit path.
$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 3}=\ldots$
Total Voltage: Sum of all voltage drops.
$V_{T}=V_{R 1}+V_{R 2}+V_{R 3}+\ldots$
$\frac{E_{R 1}}{I_{R 1} I_{R 1}}$

$\frac{\mathrm{E}_{\mathrm{R} 3}}{\mathrm{I}_{\mathrm{R} 3} \mathrm{I}_{\mathrm{R} 3}}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\ldots \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 3}=\ldots \\
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 2}+\mathrm{V}_{\mathrm{R} 3}+\ldots
\end{aligned}
$$

Step 1. Find $\mathrm{R}_{\mathrm{T}}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$

$$
\frac{E_{R 3}}{I_{R 3}} \frac{R}{R}
$$

Step 2. Find $\mathrm{I}_{\mathrm{T}}=\frac{\mathrm{E}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{T}}}$
Step 3. Find Voltage Drops

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 1} \times \mathrm{R} 1 \\
& \mathrm{E}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 2} \times \mathrm{R} 2 \\
& \mathrm{E}_{\mathrm{R} 3}=\mathrm{I}_{\mathrm{R} 3} \times \mathrm{R} 3
\end{aligned}
$$

	V	R	
Short	0 V	Max	0Ω
Open	Max	0 A	∞

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\ldots \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 3}=\ldots \\
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 2}+\mathrm{V}_{\mathrm{R} 3}+\ldots
\end{aligned}
$$

Step 1. Find $\mathrm{R}_{\mathrm{T}}=$

Step 2. Find $\mathrm{I}_{\mathrm{T}}=$

Step 3. Find Voltage Drops

$$
E_{R 1}=
$$

$$
\mathrm{E}_{\mathrm{R} 2}=
$$

$\mathrm{E}_{\mathrm{R} 3}=$

	V	I	R
Short	0 V	Max	0Ω
Open	Max	0 A	∞

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\ldots \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 3}=\ldots \\
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 2}+\mathrm{V}_{\mathrm{R} 3}+\ldots
\end{aligned}
$$

Step 1. Find $\mathrm{R}_{\mathrm{T}}=$

Step 2. Find $\mathrm{I}_{\mathrm{T}}=$

Step 3. Find Voltage Drops

$$
E_{R 1}=
$$

$$
\mathrm{E}_{\mathrm{R} 2}=
$$

$$
\mathrm{E}_{\mathrm{R} 3}=
$$

