Parallel Circuit Troubleshooting

Objectives:

Follow a logical troubleshooting procedure.

Identify an open, short, and changed value component component in a parallel circuit.

Analyze a parallel circuit and determine if the circuit is defective.

Troubleshooting

The main reason why a technician is asked to look at a circuit is to fix it when it is not operating properly.

To find the problem, the technician must follow a procedure that is **logical** and **systematic**.

<u>Logical</u>: If a procedure is logical, the procedure shows consistency of reasoning. In other words, the procedure makes common sense.

Systematic: for a procedure to be systematical, steps must be followed in a certain order. Following the necessary steps insures that you will not overlook anything and you will obtain the best results from your troubleshooting.

Troubleshooting

Logical Troubleshooting procedure.

- 1. **Analyze the circuit**: Check circuit operation to see how it functions.
- 2. Check Setup: Recheck power, controls, and connections.
- 3. <u>Calculate</u> circuit values, then <u>measure</u> them in the circuit.
- 4. **Compare** and **recheck** calculated and measured values.

Faults

Open: Actually opens the current path, causing electron flow to stop. Has a resistance of ∞

Short: Eliminates the resistance of a component. Resistance of a short is 0Ω .

<u>Changed Value</u>: Occurs when a component's value surpasses its tolerance. Could be above or below original value.

	V	1	Λ
Short	0V	Max	Ω
Open	Max	0A	8

17

D