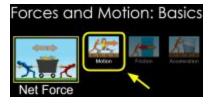
## Forces and Motion: Basics



## PhET: Forces and Motion Basics

Link to sim: https://phet.colorado.edu/en/simulation/forces-and-motion-basics

Open the simulation and press the arrow to start.


**Newton's 1st Law** is also known as the Law of Inertia. It says that objects will stay still or keep moving in the same direction and same speed until they're acted upon by an <u>unbalanced</u> force.

**Newton's 2nd Law** tells us that the more force is applied to an object the faster it will accelerate. It also tells us that objects with a greater mass need a greater force to be applied in order to accelerate them.

**Acceleration** is any change in motion. This means speeding up (this includes starting to move), slowing down (including stopping), or changing direction.

## Part 1: The "Motion" tab

- Click on the "Motion" option.
- Check the boxes for "Values", "Masses", and "Speed" ("Force" should already be checked)
- Use the arrows at the bottom to slowly increase the amount of force applied to the box until the box starts moving.
- 1. How much force does it take to start moving the 50 kg box?
- 2. Why do you need to apply a force in order to get the box to move?
- 3. How much force do you need to apply in order to stop the box?
- 4. Which of Newton's Laws does this demonstrate?
- 5. How does it demonstrate that law?





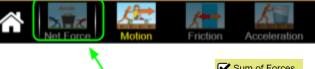
Force Values

Speed 0

Per

Date

• Fill in the chart below, adding your own mix in the final row.


| Object               | Total mass | Force needed to get it moving at 5 m/s |
|----------------------|------------|----------------------------------------|
| Box                  |            |                                        |
| Box with Girl        |            |                                        |
| Box with Man         |            |                                        |
| Box with Garbage Can |            |                                        |
| Fridge               |            |                                        |
|                      |            |                                        |

- 6. What is the pattern you see between the total mass and the force needed to accelerate to 5 m/s?
- 7. Which of Newton's Laws does this demonstrate?
- 8. How does it demonstrate that law?

## Part 2: The "Net Force" tab

- Click on the "Net Force" option at the bottom of your screen.
- Check the boxes for "Some of Forces", "Values", and "Speed"
- Fill in the chart below, adding your own mix in the final row. **Be sure to fill out your prediction before you press "Go!"**

| People &                    | Predicted | Sum of Forces        | Actual Movement     | Speed |
|-----------------------------|-----------|----------------------|---------------------|-------|
| Placement                   | Movement  | (0, x-left, x-right) | (none, left, right) | (m/s) |
| Same size<br>Same placement |           |                      |                     |       |



| Sum of Fo | orces |
|-----------|-------|
| Values    |       |
| Speed 🦻   | )     |

| People &<br>Placement                    | Predicted<br>Movement | Sum of Forces<br>(0, x-left, x-right) | Actual Movement<br>(none, left, right) | Speed<br>(m/s) |
|------------------------------------------|-----------------------|---------------------------------------|----------------------------------------|----------------|
| Same size<br>Different<br>placement      |                       |                                       |                                        |                |
| Different size<br>Same placement         |                       |                                       |                                        |                |
| Different size<br>Different<br>placement |                       |                                       |                                        |                |

9. Your science class is going to play a game of tug-of-war and you need to divide up the teams. There are **11** people participating. If you want equal teams, how would you decide who is on which side and why? Use what you have learned about Newton's Laws of motions to explain.