INFORMATION ASSURANCE SECURITY+ LAB SERIES #### **Table of Contents** - Lab 1: Network Devices and Technologies Capturing Network Traffic - Lab 2: Secure Network Administration Principles Log Analysis - Lab 3: Protocols and Default Network Ports Transferring Data Using TCP/IP - Lab 4: Protocols and Default Network Ports Connecting to a Remote System - Lab 5: Secure Implementation of Wireless Networking - **Lab 6: Incident Response Procedures** - Lab 7: Analyze and Differentiate Types of Malware - Lab 8: Analyze and Differentiate Types of Attacks Using Window Commands - Lab 9: Analyze and Differentiate Types of Application Attacks - Lab 10: Mitigation and Deterrent Techniques Anti Forensic - Lab 11: Mitigation and Deterrent Techniques Password Cracking - Lab 12: Discovering Security Threats and Vulnerabilities - Lab 13: Importance of Data Security Data Theft - Lab 14: Importance of Data Security Securing Data Using Encryption Software - Lab 15: Authentication, Authorization and Access Control - **Lab 16: General Cryptography Concepts** ### CompTIA Security+® Lab Series # Lab 1: Network Devices and Technologies - Capturing Network Traffic CompTIA Security+® Domain 1 - Network Security Objective 1.1: Explain the security function and purpose of network devices and technologies Document Version: 2012-08-15 (Beta) Lab Author: Jesse Varsalone Assistant Professor **Cyber Security** **Organization: Community College of Baltimore County** Copyright © 2003-2012 Center for Systems Security and Information Assurance (CSSIA) The development of this document is funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746; Center for Systems Security and Information Assurance (CSSIA) is an entity of Moraine Valley Community College. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy of this license can be found at http://www.gnu.org/licenses/fdl.html. #### Contents | 1 Introdu | ction | 3 | |------------------------|--|----| | 2 Objecti | ve: Explain the security function and purpose of network devices and | | | technologie | S | 3 | | 3 Pod Top | oology | 4 | | 4 Lab Set | tings | 5 | | Task 1 Usi | ng tcpdump to Capture Network Traffic | 9 | | | Using tcpdump | | | Task 1.2 | Conclusion | 20 | | Task 1.3 | Discussion Questions | 20 | | Task 2 Ca _l | oturing and Analyzing Traffic with Wireshark | 21 | | Task 2.1 | Using Wireshark | 21 | | Task 2.2 | Conclusion | 28 | | Task 2.3 | Discussion Questions | 28 | | Task 3 Ca _l | oturing and Analyzing Traffic with Network Miner | 29 | | Task 3.1 | Using Network Miner | 29 | | Task 3.2 | Conclusion | 33 | | Task 3.3 | Discussion Questions | 33 | | 5 Referer | nces | 34 | #### 1 Introduction This lab is part of a series of lab exercises designed through a grant initiative by the Center for Systems Security and Information Assurance (CSSIA) and the Network Development Group (NDG), funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746. This series of lab exercises is intended to support courseware for CompTIA Security+ certification. By performing this lab, students will learn the process of capturing network traffic using three different methods, the tcpdump command, Wireshark, and Network Minor. The tcpdump command has no Graphical User Interface (GUI) and is only utilized within a Linux terminal. Wireshark shows you the raw output of network traffic captures and allows you to analyze them. Network Miner will allow you to capture data, and it will also pull out items like clear text messages and pictures. This lab includes the following tasks: - Task 1 Using tcpdump to capture Network Traffic - Task 2 Capturing and Analyzing Traffic with Wireshark - Task 3 Capturing and Analyzing Traffic with Network Miner ## 2 Objective: Explain the security function and purpose of network devices and technologies An essential part of network administration is the ability to capture and analyze network traffic. This can be important in order to identify the cause of bottlenecks, determining who is responsible for certain download activity, or analyzing an intrusion. **Wireshark** [1] – A protocol analyzer that reads binary capture files. Wireshark will also allow you to capture network traffic and runs on Windows, Linux, and on Mac OS X. **Network Miner** [2] – Network Miner allows you to capture and analyze network traffic. It is an NFAT, or Network Forensics Tool, that runs on the Windows operating system. tcpdump [3] – A Linux/UNIX program that allows you to capture network traffic. **Sniffer** – A sniffer is used to capture network traffic on a Network. Software programs like tcpdump, Wireshark, and Network Miner can be used to sniff traffic. **PCAP File** – Programs that can sniff network traffic such as tcpdump, Wireshark, and Network Miner allow you to save the network capture to a PCAP file format. In order to read the PCAP format, you need a tool like Wireshark or Network Miner. #### 3 Pod Topology Figure 1: MSEC Network Topology #### 4 Lab Settings The information in the table below will be needed in order to complete the lab. The task sections below provide details on the use of this information. #### **Required Virtual Machines and Applications** Log in to the following virtual machines before starting the tasks in this lab: | Windows 7 Internal Attack Machine | 192.168.100.5 | |--|-----------------| | Windows 7 student password | password | | Linux Sniffer | No IP Addresses | | Linux Sniffer root password | toor | | BackTrack 5 Internal Attack Machine | 192.168.100.3 | | BackTrack 5 root password | password | | Windows 2k3 Server Internal Victim Machine | 192.168.100.201 | | Windows 2k3 Server administrator password | password | | BackTrack 4 External Attack Machine | 10.10.19.148 | | BackTrack 4 External root password | password | | Windows 2k3 Server External Victim | 10.10.19.202 | | Windows 2k3 Server administrator password | password | #### Windows 7 Login: - 1. Click on the Windows 7 icon on the topology. - 2. Enter the username, **student** (verify the username with your instructor). - 3. Type in the password, **password** and hit enter to log in (verify the password with your instructor). Figure 2: Windows 7 login #### **Linux Sniffer Login:** - 1. Click on the Linux Sniffer icon on the topology. - 2. Type root at the bt login: username prompt. - 3. At the password prompt, type **toor**. For security purposes, the password will not be displayed. 4. To start the GUI, type **startx** at the root@bt:~# prompt and hit **enter**. ``` bt login: root Password: Last login: Sun Feb 8 18:33:44 EST 2009 on tty1 Linux bt 2.6.28.1 #2 SMP Wed Feb 4 21:50:02 EST 2009 i686 ++ WELCOME TO THE BACKTRACK LIVE CD ++ [*] To start Networking - "/etc/init.d/networking start" [*] To start KDE - "startx" [*] To start FVWM - "bt4-crystal" [*] http://www.remote-exploit.org/ root@bt:~# startx ``` Figure 3: Linux Sniffer login #### BackTrack 5 Login: - 1. Click on the BackTrack 5 icon on the topology. - 2. Type **root** at the bt login: username prompt. - 3. Type password at the Password: prompt. ``` BackTrack 5 R1 – Code Name bt login: root Password: _ ``` Figure 4: BackTrack 5 login 4. To start the GUI, type **startx** at the root@bt:~# prompt. ``` [*] To start a graphical interface, type "startx". [*] The default root password is "toor". root@bt:~# startx_ ``` Figure 5: BackTrack 5 GUI start up #### Windows 2003 Server Login: - 1. Click on the Windows 2k3 Server icon on the topology (these instructions will work for both internal and external victim machines). - 2. Enter the User name, **Administrator** (verify the username with your instructor). - 3. Type in the password: **password** and click the **OK** button (verify the password with your instructor). Figure 6: Windows 2k3 login #### BackTrack 4 Login: - 1. Click on the BackTrack 4 icon on the topology. - 2. At the Ubuntu boot menu, type **bt4** to select the BackTrack 4 system. Figure 7: Ubuntu Boot Menu - 3. Type **root** at the bt login: username prompt. - 4. Type **password** at the Password: prompt. For security purposes, the password will not be displayed. 5. To start the GUI, type **startx** at the stroot@bt:~# prompt. ``` BackTrack 4 Beta bt tty1 bt login: root Password: Last login: Sat Jun 16 12:07:06 EDT Linux bt 2.6.28.1 #2 SMP Wed Feb 4 2 ++ WELCOME TO THE BACKTRACK LIVE CD [*] To start Networking - "/etc/ini' [*] To start KDE - "startx" [*] To start FUWM - "bt4-crystal" [*] http://www.remote-exploit.org/ stroot@bt:~# startx ``` Figure 8: BackTrack 4 login #### Task 1 Using tcpdump to Capture Network Traffic Part of a network administrator's job can be to capture and analyze network traffic. This is done for a variety of reasons, including the identification of the cause of bottlenecks, determining who is responsible for certain download activity, or analyzing an intrusion. There are many tools that can be utilized to capture network traffic, including tcpdump. #### Task 1.1 Using tcpdump The Linux distribution BackTrack is installed on the sniffer machine. BackTrack is a distribution used by security professionals for penetration testing and forensics. #### Log on to the sniffer. If you have already logged into the Linux Sniffer as described in Lab Settings, section 4, skip this first step and begin this task at Step 2. 1. Log into the Linux Sniffer with the username of **root** with the password of **toor**. For security purposes, the password will not be displayed. Type the following command to
initialize the GUI (Graphical User Interface): root@bt:~#startx ``` bt login: root Password: Last login: Sun Feb 8 18:33:44 EST 2009 on tty1 Linux bt 2.6.28.1 #2 SMP Wed Feb 4 21:50:02 EST 2009 i686 ++ WELCOME TO THE BACKTRACK LIVE CD ++ [*] To start Networking - "/etc/init.d/networking start" [*] To start KDE - "startx" [*] To start FVWM - "bt4-crystal" [*] http://www.remote-exploit.org/ root@bt:~# startx ``` Figure 9: Logging on to the Sniffer 2. Open a terminal on the Sniffer system by clicking on the image to the left of Firefox in the task bar, in the bottom of the screen. Figure 10: The Terminal Windows within BackTrack One of the nice features of some versions of BackTrack is that they are not automatically assigned IP Addresses though the use of DHCP, or Dynamic Host Configuration Protocol. The idea is to come on the network quietly, without being detected. 3. Only the loopback address, 127.0.0.1, is displayed when you type: root@bt:~#ifconfig Figure 11: No IP Address, other than the Loopback Address of 127.0.0.1, is Displayed 4. Type the following command to view all available interfaces on the system: root@bt:~#ifconfig -a ``` root@bt:~# ifconfig -a eth0 Link encap:Ethernet Hwaddr 00:0c:29:31:4f:f2 BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0x2000 eth1 Link encap:Ethernet Hwaddr 00:0c:29:31:4f:fc BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0x2080 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 ``` Figure 12: All Available Interfaces on the System Neither of the interfaces, eth0 or eth1, are assigned IP Addresses on their respective networks. The reason the sniffer has two interfaces is that it is located on two networks. Note: The pfSense Firewall also has 2 interfaces and is also connected to both networks. Figure 13: The Sniffer is Connected to Two Networks A sniffer should be operating in promiscuous mode so it can see all network traffic. To put the interfaces into promiscuous mode, type the following commands: ``` root@bt:~# ifconfig eth0 -promisc root@bt:~# ifconfig eth1 -promisc ``` Two ways to ensure that a sniffer will capture all traffic on a network segment are: - Connect the Sniffer and other devices on the Network to a Hub - Connect the Sniffer to a switch's SPAN port, Switched Analyzed Network Port - 5. To activate the first interface, type the following command: root@bt:~#ifconfig eth0 up ``` root@bt: ~ - Shell - Konsole Session Edit View Bookmarks Settings Help root@bt: ~# ifconfig eth0 up root@bt: ~# ``` Figure 14: Activating the First Interface To verify the first interface, type the following command: root@bt:~#ifconfig eth0 Figure 15: The Interface is activated without an IP Address 6. To activate the second interface, type the following command: root@bt:~#ifconfig eth1 up Figure 16: Activating the Second Interface 7. To verify the second interface, type the following command: root@bt:~#ifconfig eth1 Figure 17: The Interface is activated without an IP Address The Linux/UNIX utility tcpdump is commonly used by network administrators to capture network traffic on a sniffer. Many sniffer machines do not have GUI, or Graphical User Interfaces, so running GUI based tools like Wireshark or Network Miner is not possible. Another benefit to using tcpdump is that it handles very large capture files with no problem. 8. Type the following command to view several available switches for tcpdump: root@bt:~#tcpdump --help Figure 18: The Available Options for tcpdump 9. To run tcpdump on the network segment interface eth0 is connected to, type: root@bt:~#tcpdump -i eth0 Wait until at least one packet is displayed before stopping the capture. ``` root@bt:~# tcpdump -i eth0 tcpdump: WARNING: eth0: no IPv4 address assigned tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes 18:10:47.797078 IP 192.168.100.5.netbios-dgm > 192.168.100.255.netbios-dgm: NBT UDP PACKET(138) ``` Figure 19: The output of tcpdump on the network segment interface eth0 is connected After one packet or more is displayed, hit **CTRL-C** to stop the network capture. If the network 192.168.100.0/24 is displayed, eth0 is located on the first network. If the network 10.10.19.0/24 is displayed, eth0 is located on the second network. Also, notice that the default for tcpdump is to capture only the first 96 bytes. 10. To run tcpdump on the network segment interface eth1 is connected to, type: root@bt:~#tcpdump -i eth1 Wait until at least one packet is displayed before stopping the capture. ``` root@bt:~# tcpdump -i eth1 tcpdump: WARNING: eth1: no IPv4 address assigned tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN1OMB (Ethernet), capture size 96 bytes 18:33:25.983374 IP 10.10.19.202.netbios-dgm > 10.10.19.255.netbios-dgm: NBT UDP PACKET(138) ``` Figure 20: The output of tcpdump on the network segment interface eth1 is connected After one packet or more is displayed, hit **CTRL-C** to stop the network capture. If the network 192.168.100.0/24 is displayed, eth1 is located on the first network. If the network 10.10.19.0/24 is displayed, eth1 is located on the second network. 11. To capture traffic on the 192.168.100.0/24 network and send it to a file, type: root@bt:~#tcpdump –i eth0 -nntttt -s 0 -w capnet1.pcap -C 100 ``` root@bt:~# tcpdump -i eth0 -nntttt -s 0 -w capnet1.pcap -C 100 tcpdump: WARNING: eth0: no IPv4 address assigned tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes ``` Figure 21: tcpdump syntax The following table lists details of the switches used with the tcpdump command: | -i eth0 | Use interface zero | |---------|--| | -nntttt | Disable DNS resolution, date and time format | | -s 0 | Disables default packet size of 96 bytes, full packet size | | -w | Write to a capture file, instead of displaying to the screen | | -C | Split the captures into files of this size | Figure 22: Detailed tcpdump Syntax Explained Wait about 5 minutes so that your capture file will have some generated traffic. Press **CTRL-C** to stop tcpdump from running and discontinue the network capture. 12. To view the capture file, type the following command at the BackTrack terminal: root@bt:~#wireshark capnet1.pcap Figure 23: Opening the tcpdump capture with Wireshark 13. Check the **Don't show the message again** box and click the **OK** button. Figure 24: Opening the tcpdump capture with Wireshark Wireshark will open and the capture file will appear, similar to the one seen below: Notice that the traffic listed takes place on the 192.168.100.0/24 network. Figure 25: The tcpdump Capture is Displayed within Wireshark - 14. Close Wireshark. - 15. To capture traffic on the 10.10.19.0/24 network and send it to a file, type: root@bt:~#tcpdump –i eth1 -nntttt -s 0 -w capnet2.pcap -C 100 Figure 26: tcpdump syntax Wait about 5 minutes so that your capture file will have some generated traffic. Press CTRL-C to stop tcpdump from running and discontinue the network capture. 16. To view the capture file, type the following command at the BackTrack terminal: root@bt:~#wireshark capnet2.pcap Figure 27: Opening the tcpdump capture with Wireshark Wireshark will open and the capture file will appear similar to the one seen below: Notice that the traffic listed takes place on the 10.10.19.0/24 network. Exit Wireshark when finished. Figure 28: The tcpdump Capture is Displayed within Wireshark You can also filter which type of traffic you want to see with tcpdump. For example, if you just want to see ICMP traffic, you can filter tcpdump for that type of traffic. 17. Log on to the Windows Internal 2003 Server by clicking the **Send Ctrl-Alt-Del** link in the bottom right hand corner of the browser window. Log on to the 2003 server with the username of **Administrator** and the password of **password**. Figure 29: Send Ctrl-Alt-Del to the Windows 2003 Server 18. Click the shortcut to the command prompt icon on the Windows 2003 Desktop. Figure 30: Windows 2003 Command Prompt 19. Type the following command to initiate a continuous ping of the gateway: C:\ping 192.168.100.1 -t ``` Command Prompt - ping 192.168.100.1 -t Microsoft Windows [Version 5.2.3790] (C) Copyright 1985-2003 Microsoft Corp. C:\>ping 192.168.100.1 -t Pinging 192.168.100.1 with 32 bytes of data: Reply from 192.168.100.1: bytes=32 time<1ms TTL=64 ``` Figure 31: Pinging the Gateway 20. On the Sniffer Machine, type the following to capture ICMP traffic on Network 1: root@bt:~#tcpdump -i eth0 icmp ``` root@bt: # tcpdump -i eth0 icmp tcpdump: WARNING: eth0: no IPv4 address assigned tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes 19:36:43.440828 IP 192.168.100.201 > 192.168.100.1: ICMP echo request, id 512, seq 56576, length 40 19:36:43.443998 IP 192.168.100.1 > 192.168.100.201: ICMP echo reply, id 512, seq 56576, length 40 19:36:44.440599 IP 192.168.100.201 > 192.168.100.1: ICMP echo request, id 512, seq 56832, length 40 19:36:44.440617 IP 192.168.100.1 > 192.168.100.201: ICMP echo reply, id 512, seq 56832, length 40 19:36:45.440482 IP 192.168.100.201 > 192.168.100.1: ICMP echo request, id 512, seq 57088, length 40 19:36:45.440743 IP 192.168.100.1 > 192.168.100.201: ICMP echo reply, id 512, seq 57088, length 40 19:36:46.440444 IP
192.168.100.201 > 192.168.100.1: ICMP echo request, id 512, seq 57344, length 40 19:36:46.440709 IP 192.168.100.1 > 192.168.100.201: ICMP echo reply, id 512, seq 57344, length 40 ``` Figure 32: Capturing ICMP Traffic with tcpdump Press **CTRL-C** to stop tcpdump from running and discontinue the network capture. On the Windows 2003 Server system, type **CTRL-C** to stop the continuous ping. 21. Log into the External BackTrack 4 machine with the username of **root** and the password of **password**. For security purposes, the password won't be displayed. Type the following command to initialize the GUI, Graphical User Interface: root@bt:~#startx ``` bt login: root Password: Last login: Sun Feb 8 18:33:44 EST 2009 on tty1 Linux bt 2.6.28.1 #2 SMP Wed Feb 4 21:50:02 EST 2009 i686 ++ WELCOME TO THE BACKTRACK LIVE CD ++ [*] To start Networking - "/etc/init.d/networking start" [*] To start KDE - "startx" [*] To start FVWM - "bt4-crystal" [*] http://www.remote-exploit.org/ root@bt:~# startx ``` Figure 33: Logging on to the External BackTrack machine 22. Log on to the Windows External 2003 Server by clicking the **Send Ctrl-Alt-Del** link in the bottom right hand corner of the browser window. Log on to the 2003 server with the username of **Administrator** and the password of **password**. Figure 34: Send Ctrl-Alt-Del to the Windows 2003 Server 23. Click the shortcut to the command prompt icon on the Windows 2003 Desktop. Figure 35: Windows 2003 Command Prompt 24. Type the following command to continuously ping the External BackTrack VM: C:\ping 10.10.19.148 -t ``` Command Prompt - ping 10.10.19.148 -t Microsoft Windows [Version 5.2.3790] (C) Copyright 1985-2003 Microsoft Corp. C:\>ping 10.10.19.148 -t Pinging 10.10.19.148 with 32 bytes of data: Reply from 10.10.19.148: bytes=32 time<1ms TTL=64 ``` Figure 36: Pinging the External BackTrack Machine 25. On the Sniffer Machine, type the following to capture ICMP traffic on Network 2: root@bt:~#tcpdump –i eth1 icmp ``` root@bt:~# tcpdump -i ethl icmp tcpdump: WARNING: ethl: no IPv4 address assigned tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on ethl, link-type EN10MB (Ethernet), capture size 96 bytes 19:53:43.231657 IP 10.10.19.202 > 10.10.19.148: ICMP echo request, id 512, seq 38144, length 40 19:53:43.233400 IP 10.10.19.148 > 10.10.19.202: ICMP echo reply, id 512, seq 38144, length 40 19:53:44.231331 IP 10.10.19.202 > 10.10.19.148: ICMP echo request, id 512, seq 38400, length 40 19:53:44.231593 IP 10.10.19.148 > 10.10.19.202: ICMP echo reply, id 512, seq 38400, length 40 19:53:45.231149 IP 10.10.19.202 > 10.10.19.148: ICMP echo request, id 512, seq 38656, length 40 19:53:45.231413 IP 10.10.19.148 > 10.10.19.202: ICMP echo reply, id 512, seq 38656, length 40 19:53:46.231294 IP 10.10.19.202 > 10.10.19.148: ICMP echo request, id 512, seq 38912, length 40 19:53:46.231575 IP 10.10.19.148 > 10.10.19.202: ICMP echo reply, id 512, seq 38912, length 40 19:53:47.231192 IP 10.10.19.148 > 10.10.19.148: ICMP echo request, id 512, seq 38912, length 40 ``` Figure 37: Capturing ICMP Traffic with tcpdump - 26. Press **CTRL-C** to stop tcpdump from running and discontinue the network capture. - 27. In the Windows 2003 Server system, press CTRL-C to stop the continuous ping. #### Task 1.2 Conclusion The tcpdump command is built into the Linux and Unix operating systems. It can be used to capture network traffic. The benefits of using tcpdump include the fact that many sniffer machines do not have GUI, or Graphical User Interfaces, so running GUI based tools like Wireshark is not possible. Another benefit to using tcpdump is that it handles very large capture files with no problem, and it allows you to filter for specific traffic. #### Task 1.3 Discussion Questions - 1. Does a network interface on a sniffer machine require an IP Address? - 2. In what mode does a sniffer's network interface operate? - 3. How do you determine available switches for tcpdump? - 4. How can you display all of the network interfaces in Linux? #### Task 2 Capturing and Analyzing Traffic with Wireshark Wireshark is a GUI, or Graphical User Interface, tool that will allow you to capture and analyze network traffic. Wireshark runs on Windows, Linux, and on Mac OS X. Wireshark can be downloaded from the following link: http://www.wireshark.org/download.html. #### Task 2.1 Using Wireshark Before using Wireshark, it is important to bring the sniffer interfaces up. Even though this was done in Task 1, it is a good idea to start over to practice all of the required steps. 1. On the Linux Sniffer system, bring both of the Sniffer interfaces up by typing the following two commands: ``` root@bt:~#ifconfig eth0 up root@bt:~#ifconfig eth1 up ``` ``` root@bt: ~ - Shell - Konsole Session Edit View Bookmarks Settings Help root@bt: ~# ifconfig eth0 up root@bt: ~# ifconfig eth1 up ``` Figure 38: Turning both Sniffer Interfaces on Type the following to verify that no IP Address has been set for either interface: root@bt:~#ifconfig ``` oot@bt:~# ifconfig eth0 Link encap:Ethernet Hwaddr 00:0c:29:31:4f:f2 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0x2000 ethl Link encap:Ethernet Hwaddr 00:0c:29:31:4f:fc UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0x2080 ``` Figure 39: Verifying that the Sniffer Interfaces do not have IP Addresses 3. In the Sniffer terminal, type the following command to start Wireshark: root@bt:~#wireshark Figure 40: Opening Wireshark 4. To view the available interfaces, select **Capture** then go down to **Interfaces.** Figure 41: Selecting Interfaces from the Capture Menu The Wireshark: Capture Interfaces pop-up box will be displayed on the sniffer. Figure 42: The Devices eth0 and eth1 do not have IP Addresses listed Notice that eth0 and eth1 do not have IP Addresses listed under the IP column. 5. Within the Capture Interfaces menu, click Start for the eth0 network device. Figure 43: Starting a Capture on the Network using Interface eth0 During this exercise, we will be capturing plain text FTP, or File Transfer Protocol, traffic from the Windows 7 Internal Machine to the Windows 2003 Internal machine. 6. Open a command prompt on the Windows 7 machine by double clicking on the **cmd-Shortcut** on the desktop. Figure 44: Opening a Command Prompt on Windows 7 7. Type the following command to connect to the Windows 2003 FTP Server: C:\ftp 192.168.100.201 ``` C:\>ftp 192.168.100.201 Connected to 192.168.100.201. 220 Microsoft FTP Service User (192.168.100.201:(none)): ``` Figure 45: Connecting to the FTP Server 192.168.100.201 You should receive the message, connected to 192.168.100.201. 8. For the username, type **ftp** and hit enter. For the password, type **mysecurepass**. Note: For security purposes, the password will not be displayed when you type it Figure 46: Logging in to the FTP Server You should receive the message, 230 Anonymous user logged in. 9. On the sniffer machine, click the **stop** button on Wireshark to stop the capture. Figure 47: Stopping the Wireshark capture 10. On the Sniffer machine, type ftp in the filter pane and click Apply. Figure 48: Typing ftp in the Wireshark filter pane If you scroll over, you can see the username of **ftp** and the password of **mysecurepass**. Figure 49: The FTP username and password appear in clear text. Now, we will capture FTP traffic on the external network using interface eth1. 11. To view the available interfaces, select **Capture** then go down to **Interfaces**. Figure 50: Selecting Interfaces from the Capture Menu The Wireshark: Capture Interfaces pop-up box will be displayed on the sniffer. Figure 51: The Devices eth0 and eth1 do not have IP Addresses listed Notice that eth0 and eth1 do not have IP Addresses listed under the IP column. 12. Within the Capture Interfaces menu, click Start for the eth1 network device. Figure 52: Starting a Capture on the Network using Interface eth1 During this exercise, we will be capturing plain text FTP, or File Transfer Protocol, traffic from the BackTrack 4 External Machine to the Windows 2003 Server External machine. 13. Click **Continue without Saving** if you receive a warning message. Figure 53: Continue Without Saving - 14. In the Sniffer's terminal, type the command **bye** to exit the ftp connection. - 15. Open a terminal on the Backtrack 4 system by clicking on the image to the left of Firefox in the task bar, in the bottom of the screen. Figure 54: The BackTrack Terminal 16. Type the following command to connect to the Windows 2003 FTP Server: root@bt:~#ftp 10.10.19.202 Figure 55: Connecting to the FTP Server 192.168.100.201 You should receive the message, Connected to 10.10.19.202. 17. For the username, type **ftp** and hit enter. For the password, type **supersecure**. For security purposes, the password will not be displayed when you type it. ``` Name (10.10.19.202:root): ftp 331 Anonymous access allowed, send identity (e-mail name) as password. Password: 230 Anonymous user logged in. Remote system type is Windows_NT. ftp> ``` Figure 56: Logging in to the FTP Server You should receive the message, 230 Anonymous user logged in. 18. On the Sniffer machine, click the stop button on Wireshark to stop the capture. Figure 57: Stopping the Wireshark capture 19. On the Sniffer machine, type **ftp** in the filter pane and click apply. (if needed) Figure 58: Typing ftp in the Wireshark filter pane If you scroll over, you will see the username of **ftp** and the password of **supersecure**. | FTP | Request: USER ftp | |-----|--| | FTP | Response:
331 Anonymous access allowed | | FTP | Request: PASS supersecure | Figure 59: The FTP username and password appear in clear text. 20. Exit Wireshark. In the BackTrack 4 terminal, type the command **bye** to exit the ftp connection. #### Task 2.2 Conclusion Wireshark is a GUI, or Graphical User Interface, tool that will allow you to capture and analyze network traffic. Wireshark runs on Windows, Linux, and on Mac OS X. Wireshark can be used to capture network traffic on an interface on the sniffer without an IP Address. The Wireshark filter pane can be used to filter for various types of traffic. #### Task 2.3 Discussion Questions - 1. Do FTP usernames and passwords appear in clear text? - 2. How do you choose the interface to capture on within Wireshark? - 3. How do you filter for a certain protocol within the Wireshark program? - 4. How do you open the Wireshark program from the terminal in Linux? #### Task 3 Capturing and Analyzing Traffic with Network Miner Network Miner is an NFAT, or Network Forensic Analysis Tool, that runs on Windows operating systems. The tcpdump command has no Graphical User Interface and is only utilized within a Linux terminal. Wireshark shows you the raw output of network traffic captures and allows you to analyze them. Network Miner will allow you to capture data, and it will also pull out items like clear text messages and pictures. #### Task 3.1 Using Network Miner #### **Open Network Miner** 1. Open Network Miner on the Windows 7 machine by double clicking on the desktop shortcut. Figure 60: Opening Network Miner 2. Click the arrow to the right of the words **Select a network adapter in the list** and select: **Socket: Intel® PRO/1000MT Network Connection(192.168.100.5)** Figure 61: Selecting the Appropriate Interface Verify that the correct Interface has now been selected within Network Miner. Figure 62: The Correct Interface has been selected within Network Miner 3. Click the **Start** button, located on the right, to start a network capture. Figure 63: Staring the Capture 4. Click on the **Internet Explorer Icon** in the Windows Taskbar. Figure 64: Opening Internet Explorer Internet Explorer should open to a Blank Page with about:blank in the URL bar. Figure 65: A Blank Page in Internet Explorer 5. In the URL bar, type the following to connect to the Windows 2003 Server's Web Page: http://192.168.100.201/ Figure 66: The Windows 2003 Web Page You should see the **msec.local's Test Page** when connecting to the Windows 2003 Server. 6. In the URL bar, type the following to connect to the RHEL Web Page: http://192.168.100.147/ Figure 67: The RHEL Web Site 7. Click on the **Stop** button to end the Network Miner capture. Figure 68: Files within the Network Capture 8. Click on the **Files** tab within the Network Miner Program. Figure 69: Files within the Network Capture 9. Right click on the first index.html file and select open file. Figure 70: The index.html file saved within the Network Capture You should see msec.local's test page. Figure 71: Opening a Local Copy of the Index.html file 10. Right click on the second **index.html** file and select open file. Figure 72: The index.html file saved within the Network Capture You should see the Red Hat Enterprise Linux Test Page. Figure 73: Opening a Local Copy of the Index.html file #### Task 3.2 Conclusion Network Miner is an NFAT, or Network Forensic Analysis Tool, that runs on Windows operating systems. Network Miner will allow you to capture data and will also pull out items like clear text messages, pictures, and web pages from visited sites. #### Task 3.3 Discussion Questions - 1. What kind of tool is Network Miner? - 2. On what operating systems will the Network Miner program run? - 3. How do you parse out web pages of visited sites in Network Miner? - 4. What needs to be configured within Network Miner prior to capturing data? #### 5 References 1. Wireshark: http://www.wireshark.org/ 2. Network Miner: http://www.netresec.com/?page=NetworkMiner 3. Man Page of tcpdump: http://www.tcpdump.org/tcpdump_man.html 4. Wireshark Download: http://www.wireshark.org/download.html 5. Network Miner Download: http://sourceforge.net/projects/networkminer/files/latest/download ## CompTIA Security+® Lab Series # Lab 2: Secure Network Administration Principles - Log Analysis CompTIA Security+® Domain 1 - Network Security Objective 1.2: Apply and implement secure network administration principles **Document Version: 2012-08-15 (Beta)** Lab Author: Jesse Varsalone **Assistant Professor** **Cyber Security** **Organization: Community College of Baltimore County** Copyright © 2003-2012 Center for Systems Security and Information Assurance (CSSIA) The development of this document is funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746; Center for Systems Security and Information Assurance (CSSIA) is an entity of Moraine Valley Community College. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy of this license can be found at http://www.gnu.org/licenses/fdl.html. #### Contents | 1 Introduc | ction | 3 | |------------|---|----| | 2 Objectiv | e: Apply and implement secure network administration principles | 3 | | | ology | | | 4 Lab Sett | ings | 5 | | | Analysis in Linux Using grep | | | Task 1.1 | Using grep | 8 | | Task 1.2 | Conclusion | 14 | | Task 1.3 | Discussion Questions | 14 | | Task 2 Log | Analysis in Linux Using gawk | 15 | | Task 2.1 | Using gawk | 15 | | | Conclusion | | | Task 2.3 | Discussion Questions | 21 | | Task 3 Log | Analysis in Windows Using find | 22 | | Task 3.1 | Using find in Windows | 22 | | Task 3.2 | Conclusion | 28 | | Task 3.3 | Discussion Questions | 28 | | 5 Referen | ces | 29 | #### 1 Introduction This lab is part of a series of lab exercises designed through a grant initiative by the Center for Systems Security and Information Assurance (CSSIA) and the Network Development Group (NDG), funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746. This series of lab exercises is intended to support courseware for CompTIA Security+ certification. By the end of this lab, students will be able to parse log files within Linux and Windows for information pertinent to security events on their system. Students will perform administration on Linux and Windows machines and view the logs from these tasks. This lab includes the following tasks: - Task 1 Log Analysis in Linux Using grep - Task 2 Log Analysis in Linux Using gawk - Task 3 Log Analysis in Windows Using find # 2 Objective: Apply and implement secure network administration principles You may have read articles online describing situations where someone's passwords were stolen and then used to gain access to an account in order to steal money. The use of strong passwords is critical to protecting your accounts, as well as data and resources within an organization. **grep** [1] –Stands for Global Regular Expression Print. The GREP utility allows you to search through a large number of files and folders for specified text. **gawk** [2] – The Linux/UNIX gawk command will allow you to display output in an easy to display human readable format. Typing **gawk –help** in Linux will display gawk options. **find** [3] – This command can be used within Linux and Windows. The find command in Windows will allow you to search for a specific string within a large group of values. **secure** [4] – This log file tracks SSH, or Secure Shell, connections. It provides information such as IP Addresses, and date and time stamps. It also tracks other events related to security, such as the creation of new user accounts and new group accounts. **access_log** – This log file tracks HTTP, or Hyper Text Transfer Protocol, connections. It provides information such as IP addresses, user Agents, and date and time stamps. #### 3 Pod Topology Figure 1: MSEC Network Topology #### 4 Lab Settings The information in the table below will be needed in order to complete the lab. The task sections below provide details on the use of this information. #### **Required Virtual Machines and Applications** Log in to the following virtual machines before starting the tasks in this lab: | BackTrack 5 Internal Attack Machine | 192.168.100.3 | |--|-----------------| | BackTrack 5 root password | password | | RHEL Internal Victim Machine | 192.168.100.147 | | RHEL root password | password | | BackTrack 4 External Attack Machine | 10.10.19.148 | | BackTrack 4 root password | password | | Windows 2k3 Server External Victim Machine | 10.10.19.202 | | Windows 2k3 Server administrator password | password | #### BackTrack 5 Login: - 1. Click on the BackTrack 5 icon on the topology. - 2. Type **root** at the **bt login**: username prompt. - 3. Type password at the Password: prompt. ``` BackTrack 5 R1 – Code Name bt login: root Password: _ ``` Figure 2: BackTrack 5 login 4. To start the GUI, type **startx** at the root@bt:~# prompt. ``` [*] To start a graphical interface, type "startx". [*] The default root password is "toor". root@bt:~# startx_ ``` Figure 3: BackTrack 5 GUI start up #### Red Hat Enterprise Linux Login: - 1. Click on the Red Hat Linux icon on the topology. - 2. Type **root** at the rhel login: prompt. - 3. Type **password** at the Password: prompt. For security purposes, the password will not be displayed. 4. To start the GUI, type **startx** at the [root@rhe ~]# prompt. ``` Red Hat Enterprise Linux Server Kernel 2.6.18-308.el5 on an
i686 rhel login: root Password: Last login: Sat Jun 16 11:48:58 [root@rhel ~]# startx_ ``` Figure 4: RHEL login #### BackTrack 4 Login: - 1. Click on the BackTrack 4 icon on the topology. - 2. At the Ubuntu boot menu, type **bt4** to select the BackTrack 4 system. Figure 5: Ubuntu Boot Menu - 3. Type **root** at the bt login: username prompt. - 4. Type **password** at the Password: prompt. For security purposes, the password will not be displayed. 5. To start the GUI, type **startx** at the stroot@bt:~# prompt. ``` BackTrack 4 Beta bt tty1 bt login: root Password: Last login: Sat Jun 16 12:07:06 EDT Linux bt 2.6.28.1 #2 SMP Wed Feb 4 2 ++ WELCOME TO THE BACKTRACK LIVE CD [*] To start Networking - "/etc/ini' [*] To start KDE - "startx" [*] To start FVWM - "bt4-crystal" [*] http://www.remote-exploit.org/ stroot@bt:~# startx ``` Figure 6: BackTrack 4 login #### Windows 2003 Server Login: - 1. Click on the Windows 2k3 Server icon on the topology (these instructions will work for both internal and external victim machines). - 2. Enter the User name, **Administrator** (verify the username with your instructor). - 3. Type in the password: **password** and click the **OK** button (verify the password with your instructor). Figure 7: Windows 2k3 login #### Task 1 Log Analysis in Linux Using grep Within Network Administration, it is very important to check the system logs every day to monitor who is logging on and what type of activity is happening on a system. Log files can become extremely large, so tools like grep can be valuable in allowing the Network Administrator to filter for certain values. There are many log analysis jobs that can be run using grep that will provide the Network Administrator with information on the status of a system. #### Task 1.1 Using grep #### Open a Terminal to Get Started If you have already logged in and started the GUI interface, as described in the Lab Settings section, you may start immediately at Step 1. When starting the BackTrack 5 system, you must first enter in the username **root** followed by the password, **password**. At the initial start up screen, type the following command to start the GUI interface: root@bt.~#**startx**. Figure 8: Linux Initial Startup Screens 1. Open a terminal on the BackTrack 5 Internal Attack system by clicking on the picture to the right of the word **System** in the task bar in the top of the screen. Figure 9: The Terminal Windows within BackTrack Nmap, or network mapper, allows you to determine which TCP (Transmission Control Protocol) or UDP (User Datagram Protocol) ports are open on a remote system. Zenmap is a GUI, Graphical User Interface, front-end for nmap. Zenmap is packaged with nmap. 2. Type the following command to perform a TCP nmap scan of the Red Hat Linux Victim: root@bt:~#zenmap Figure 10: Zenmap can be Launched by Typing the Zenmap Command within the Terminal 3. In the target box, type the IP Address of 192.168.100.147 (the Linux victim). Figure 11: Entering the IP Address of the Target Machine Notice that the switches for nmap are automatically added in the box directly below. 4. After a few seconds, click on the **Ports/Hosts** tab to display the open TCP ports. Figure 12: The Open TCP Ports on the Remote System Notice that port 80 is open, which likely means the remote system is running a Web Server. The zenmap scan indicates that the web server is Apache 2.2.3. Figure 13: The Remote System is a Web Server 5. Close the Zenmap tool by selecting **Scan** from the menu bar, and select **Quit**. Click **Close Anyway** if you receive a warning indicating that the scan is not saved. Figure 14: Closing Zenmap Now that we know port 80 is open, we can attempt to connect to the target web site. 6. Open Firefox on the BackTrack 5 machine, by performing the following steps: Click **Applications** from the Menu bar, select **Internet**, then **Firefox Web Browser**. Figure 15: Opening Firefox on BackTrack 7. In the URL bar, type the address: http://192.168.100.147 Figure 16: The Web Site of the Red Hat System The test page likely indicates that the web site has not been configured. Close Firefox. Although you can view the HTML code of a web page in Firefox, there is also a Linux utility called curl, which stands for client Uniform Resource Locator. 8. **Curl** can be used to make a copy of the website. On the BackTrack 5 terminal, type: root@bt:~#curl http://192.168.100.147 ``` ^ v x root@bt: ~ File Edit View Terminal Help root@bt:~# curl http://192.168.100.147 ``` Figure 17: The curl command The output from running the curl command will look similar to that below: Figure 18: The Output from the curl command Since the results from curl are large, you will find it helpful to filter them using the **grep** command. 9. On the BackTrack5 terminal, type the following to view HTML code and look for the word **test**: root@bt:~#curl http://192.168.100.147 | grep test ``` curl http://192.168.100.147 | grep test % Received % Xferd Average Speed Total Time Current Time Dload Upload Total Spent 3985 102 3985 Θ 92053 0 This page is used to test the proper operation n of the Apache HTTP server after it has been installed. If you can read this pa ge, it means that the Apache HTTP server installed at this site is working prope rly. ``` Figure 19: Using GREP to filter the results for the word test The word **test** is highlighted in red within the paragraph of the HTML text that contains the word. The Apache Server keeps records of the connections made to the website, including: - IP Addresses - User Agents - Date/Time Stamps The access log is located in the /var/log/httpd directory and will have evidence of: - The scan of the target website with Zenmap - The connection made with Firefox - The connection made with the curl command - 10. Switch over to the Red Hat 9 Enterprise Linux Internal Victim machine. To view the access_log, type the following command on the Red Hat system: [root@rhel ~]# cd /var/log/httpd ``` [root@rhel ~]# cd /var/log/httpd/ ``` Figure 20: Switching to the Directory where the access_log is located 11. To view the connections in the log file, type the following command: [root@rhel httpd]# cat access_log ``` root@rhel httpd]# cat access_log ``` Figure 21: Using the cat command to view the access_log The results will appear similar to the results in the picture below. ``` [root@rhel httpd]# cat access log 192.168.100.3 - - [28/May/2012:12:41:01 -0400] "GET / HTTP/1.0" 403 3985 "-" "-" 192.168.100.3 - - [28/May/2012:12:43:06 -0400] "GET / HTTP/1.1" 403 3985 "-" "Mozilla/5.0 (compatit le; Nmap Scripting Engine; http://nmap.org/book/nse.html)" 192.168.100.3 - - [28/May/2012:12:43:06 -0400] "GET /robots.txt HTTP/1.1" 404 314 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine; http://nmap.org/book/nse.html)" 192.168.100.3 - - [28/May/2012:12:43:06 -0400] "GET /sdk/../../../../../etc/vmware/hostd/vmInve ntory.xml HTTP/1.1" 404 336 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine; http://nmap.org/bd ok/nse.html)" 192.168.100.3 - - [28/May/2012:12:43:06 -0400] "OPTIONS / HTTP/1.1" 200 - "-" "Mozilla/5.0 (compati ble; Nmap Scripting Engine; http://nmap.org/book/nse.html)" 192.168.100.3 - - [28/May/2012:12:43:06 -0400] "GET /sdk/%2E%2E/%2E%2E/%2E%2E/%2E%2E/%2E%2E/%2E%2E/ etc/vmware/hostd/vmInventory.xml HTTP/1.1" 404 336 "-" "Mozilla/5.0 (compatible; Nmap Scripting En gine; http://nmap.org/book/nse.html)" 192.168.100.3 - - [28/May/2012:12:43:06 -0400] "GET /favicon.ico HTTP/1.1" 404 315 "-" "Mozilla/5.6 (compatible; Nmap Scripting Engine; http://nmap.org/book/nse.html)" 192.168.100.3 - - [28/May/2012:12:44:11 -0400] "GET / HTTP/1.1" 403 3985 "-" "Mozilla/5.0 (X11; Lin ux 1686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1" 192.168.100.3 - - [28/May/2012:12:44:33 -0400] "GET / HTTP/1.1" 403 3985 "-" "curl/7.19.7 (1486-pc- linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15 192.168.100.3 - - [28/May/2012:12:44:40 -0400] "GET / HTTP/1.1" 403 3985 "-" "curl/7.19.7 (1486-pc- linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15" ``` Figure 22: The access_log file In Linux, the access_log file can be extremely long. The GREP, or Global Regular Expression Print command can be used to filter the results of an access log or other output. 12. Type the following to filter the access_log file for the word nmap using grep: [root@rhel httpd]# cat access_log | grep nmap Figure 23: GREPing for the word nmap 13. Type the following to filter the access_log file for the word Firefox using grep: [root@rhel httpd]# cat access_log | grep Firefox ``` [root@rhel httpd]# cat access_log | grep Firefox 192.168.100.3 - - [28/May/2012:12:44:11 -0400] "GET / HTTP/1.1" 403 3985 "-" "Mozilla/5.0 (X11; Lin ux 1686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1" ``` Figure 24: GREPing for the word Firefox 14. Type the following to filter the access_log file for the word curl using grep: [root@rhel httpd]# cat access_log | grep curl ``` [root@rhel httpd]# cat access_log | grep curl 192.168.100.3 - - [28/May/2012:12:44:33 -0400] "GET / HTTP/1.1" 403 3985 "-" "curl/7.19.7 (i486-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15" 192.168.100.3 - - [28/May/2012:12:44:40 -0400] "GET / HTTP/1.1" 403 3985 "-" "curl/7.19.7 (i486-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15" ``` Figure 25: GREPing for the word curl #### Task 1.2 Conclusion The access_log file within Linux provides information about connections to the server, including IP addresses, user agents, and date and time stamps. Log files can be extremely long and may contain a large amount of information about the connections made to the server. Linux utilities like grep can be used to filter the results of the file output. #### Task 1.3 Discussion Questions - 1. Where is the access_log file located on a Linux system? - 2. What is contained within the access_log file? - 3. What does curl stand for? - 4. How do you grep for the word nmap within the access log? #### Task 2
Log Analysis in Linux Using gawk While grep will allow you to filter the results of the file output, it will not really allow you to display the output differently. This is where gawk comes in; the Linux gawk command can be used to display the output of a text file in a more readable form. #### Task 2.1 Using gawk Perform the following steps to generate security incidents on the Linux Victim system. 1. Open a terminal on the BackTrack 5 system by clicking on the picture to the right of the word **System** in the task bar in the top of the screen. Figure 26: The Terminal Windows within BackTrack 5 - 2. Type the following command to SSH, to Secure Shell, to the remote system: [root@rhel ~]# ssh 192.168.100.147 - a. Type **yes** when asked "Are you sure you want to continue connecting (yes/no)? - b. Type **password** for the password for root@192.168.100.147. ``` root@bt:~# ssh 192.168.100.147 The authenticity of host '192.168.100.147 (192.168.100.147)' can't be established. d. RSA key fingerprint is 21:88:ba:44:07:d8:69:62:12:5f:49:f3:cc:ac:a3:24. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '192.168.100.147' (RSA) to the list of known hosts. root@192.168.100.147's password: Last login: Fri Jul 6 11:45:36 2012 [root@rhel ~]# ``` Figure 27: You should receive a message indicating your last login time on the system. In order to create more security events, we will be creating the group **starwars**. We will create a total of three users. After creating each of the users and putting them in the group starwars, we will assign each user account a password. The chart below lists the users and passwords for our accounts in the starwars group. | Group: starwars | | | | | |-----------------|----------|--|--|--| | User | Password | | | | | luke | son | | | | | vader | dad | | | | | yoda | green | | | | 3. Type the following command to add the group **starwars**: [root@rhel ~]# **groupadd starwars** ``` [root@rhel ~]# groupadd starwars ``` Figure 28: Adding the Group starwars 4. Type the following command to view the group file: [root@rhel ~]# cat /etc/group ``` [root@rhel ~]# cat /etc/group ``` Figure 29: Viewing the Group File If you scroll to the bottom of the group file, you will see the group that was created along with its corresponding unique group number. Note: The root group has an id of zero. Figure 30: The group file You can add users to the system in Linux by typing the **useradd** command. The **useradd** command will automatically create a directory with that user's name within the **/home** directory. When the user logs in, they will be placed into their directory within **/home**. 5. To add a user named **luke** and put him in the **starwars** group, type: [root@rhel ~]# **useradd luke –g starwars** #### [root@rhel ~]# useradd luke -g starwars Figure 31: Adding the user luke 6. To add a user named **vader** and put him in the **starwars** group, type: [root@rhel ~]# **useradd vader –g starwars** #### [root@rhel ~]# useradd vader -g starwars Figure 32: Adding the user vader 7. To add a user named **yoda** and put him in the **starwars** group, type: [root@rhel ~]# **useradd yoda** —**g starwars** #### [root@rhel ~]# useradd yoda -g starwars Figure 33: Adding the user yoda Next, we will give each user a password. We will use simple passwords for this exercise, but that should never be done on a production system. Avoid dictionary words because attackers can use programs like John the Ripper to crack short passwords or passwords that are found in a dictionary. Stick to passwords with a minimum of eight characters, uppercase and lowercase letters, and special characters. When you use a simple password with the **passwd** command, you will be warned that the password is a "BAD PASSWORD: it is WAY too short". Retype the password again and it will be accepted. For security reasons, the password will not be displayed when you type it. 8. Type the following to give luke a password. Type **son** twice for the password: [root@rhel ~]# **passwd luke** Figure 34: Giving the user a Password You should receive the message, all authentication tokens updated successfully. 9. Type the following to give vader a password. Type **dad** twice for the password: [root@rhel ~]# **passwd vader** ``` [root@rhel ~]# passwd vader Changing password for user vader. New UNIX password: BAD PASSWORD: it is WAY too short Retype new UNIX password: passwd: all authentication tokens updated successfully. ``` Figure 35: Giving the user a Password You should receive the message, all authentication tokens updated successfully. 10. Type the following to give yoda a password. Type **green** twice for the password: $[root@rhel \sim]$ # **passwd yoda** ``` [root@rhel ~]# passwd yoda Changing password for user yoda. New UNIX password: BAD PASSWORD: it is too short Retype new UNIX password: passwd: all authentication tokens updated successfully. ``` Figure 36: Giving the user a Password You should receive the message, all authentication tokens updated successfully. When you perform administrative tasks that are directly related to the security on a Linux system, they will show up in the secure log in the /var/log directory. Examples of security incidents that will be recorded to the secure log include the following: - Adding a user - Logging on from a remote system - Adding a group - Changing a user's password. - 11. To view the secure log, type the following command on the Red Hat system: [root@rhel ~]# cd /var/log/ ``` [root@rhel ~]# cd /var/log ``` Figure 37: Switching to the Directory where the secure log is located 12. To view the connections in the log file, type the following command: [root@rhel log]# cat secure ``` [root@rhel log]# cat secure ``` Figure 38: Using the cat command to view the secure log The results will appear similar to the results shown in the picture below. ``` May 28 16:21:06 rhel sshd[3690]: Received disconnect from 192.168.100.3: 11: dis connected by user May 28 16:21:06 rhel sshd[3690]: pam unix(sshd:session): session closed for user root May 28 16:25:15 rhel sshd[3859]: Accepted password for root from 192.168.100.3 p ort 42236 ssh2 May 28 16:25:15 rhel sshd[3859]: pam unix(sshd:session): session opened for user root by (uid=0) May 28 17:42:31 rhel sshd[4247]: Connection closed by 192.168.100.128 May 28 17:45:02 rhel groupadd[4307]: new group: name=starwars, GID=501 May 28 17:59:48 rhel useradd[4648]: new user: name=luke, UID=501, GID=501, home= /home/luke, shell=/bin/bash May 28 17:59:57 rhel useradd[4655]: new user: name=vader, UID=502, GID=501, home =/home/vader, shell=/bin/bash May 28 18:00:05 rhel useradd[4660]: new user: name=yoda, UID=503, GID=501, home= /home/yoda, shell=/bin/bash May 28 18:05:56 rhel passwd: pam unix(passwd:chauthtok): password changed for lu ke May 28 18:11:44 rhel passwd: pam unix(passwd:chauthtok): password changed for va May 28 18:12:46 rhel passwd: pam unix(passwd:chauthtok): password changed for yo da ``` Figure 39: The secure file on the Victim Notice the file has information about new users and a new group created on the system, password changes, and contains information about incoming SSH connections. 13. Search for the instances of new user creation in secure by typing the following: [root@rhel log]# cat secure | grep "new user" ``` [root@rhel log]# cat secure | grep "new user" Jul 6 12:12:40 rhel useradd[12601]: new user: name=luke, UID=501, GID=501, home =/home/luke, shell=/bin/bash Jul 6 12:12:58 rhel useradd[12611]: new user: name=vader, UID=502, GID=501, hom e=/home/vader, shell=/bin/bash Jul 6 12:13:16 rhel useradd[12620]: new user: name=yoda, UID=503, GID=501, home =/home/yoda, shell=/bin/bash ``` Figure 40: GREPing for the new user events in the secure file. When **gawk** is used, the default field separator is a space. With the following command, everything to the right of the first space will be printed. #### gawk '{print \$1}' secure In this case, it would be the word May because that word is to the left of the first space. May 28 17:59:48 rhel useradd[4648]: new user: name=luke, UID=501, GID=501, home= To determine users created, use gawk to print values to the left of 6th, 7th, and 8th space. Figure 41: The Space as a Filed Separator 14. To determine the name of the new user created, we can use **grep** and **gawk**: [root@rhel log]# **gawk** '{print \$6,\$7,\$8}' secure | grep "new user" ``` [root@rhel log]# gawk '{print $6,$7,$8}' secure | grep "new user" new user: name=luke, new user: name=vader, new user: name=yoda, ``` Figure 42: Using the GAWK command #### Task 2.2 Conclusion The secure file in the /var/log directory will alert you to events related directly to the security on a Linux system, including account and password changes. The gawk command allows you to send specific output to the screen. The default delimiter for gawk is a space. As the secure log on a Linux system can become quite lengthy, the use of grep in conjunction with the gawk command will allow you to parse for certain events. #### Task 2.3 Discussion Questions - 1. What are the results from typing the following command? gawk –F= '{print \$2}' /var/log/secure - What are the results from typing the following command? gawk '{print \$2}' /var/log/secure - 3. What are the results from typing the following command? gawk -F= '{print \$1}' /var/log/secure - 4. What are the results from typing the following command? gawk '{print \$1}' /var/log/secure #### Task 3 Log Analysis in Windows Using find Windows also has many logs, including the IIS, or Internet Information Services logs, which are text based logs. Neither gawk nor grep are part of Windows, although you can download third party versions. Windows has find, which will perform similar functions. #### Task 3.1 Using find in Windows #### Open a Terminal to Get Started 1. Open a terminal on the BackTrack 4 External Attack system by clicking the picture to the left of Firefox in the task bar, located at the bottom
of the screen. Figure 43: The Terminal Windows within BackTrack The **xHydra** tool included with BackTrack will allow you to perform a dictionary attack against a remote system. We will be performing a dictionary attack on the FTP server with xHydra in order to generate a large amount of entries into the FTP log files. Type the following command to launch the xHydra program on BackTrack 4 system: root@bt:~#xhydra Figure 44: xHydra can be launched by typing the xhydra command within the Terminal 3. On the Target Tab, type **10.10.19.202**. Select **ftp** for the protocol. Figure 38: The Target Tab of xHydra 4. Click on the **Passwords** tab. Type **administrator** for the username. Under the password category, click on the **Password List** button. Figure 45: The Passwords Tab of xHydra 5. Click in the white space to the left of the words **Password List** in xHydra. Click the root directory, the click on **Wordlist.txt** and click the **Open** button. Figure 46: Selecting the Password File /root/Wordlist.txt should now be listed in the Password List box. Figure 47: The Password List 6. Click on the **Start** tab. At the bottom of the screen, verify that your xHydra program displays the options as shown in the picture below. Figure 48: Verifying xHydra Options 7. Click **Start**. It will take about 10-20 minutes to crack the administrator password. Figure 49: The password is cracked 8. Log on to the Microsoft Windows 2003 Server by clicking the **Send Ctrl-Alt-Del** link in the bottom right hand corner of the browser window. Log on to the 2003 server with the username of **Administrator** and the password of **password**. Figure 50: Send Ctrl-Alt-Del to the Windows 2003 Server 9. On the Windows 2k3 Server Victim Machine, open a command prompt by clicking on the Command Prompt Shortcut located on the administrator's desktop. Figure 51: Opening a Command Prompt 10. Navigate to the FTP Logfiles directory by typing the following command: C:\cd c:\Windows\System32\Logfiles\msftpsvc1 ``` © Command Prompt Microsoft Windows [Version 5.2.3790] (C) Copyright 1985-2003 Microsoft Corp. c:\>cd c:\WINDOWS\system32\LogFiles\MSFTPSVC1 C:\WINDOWS\system32\LogFiles\MSFTPSVC1> ``` Figure 52: Navigating to the FTP Log files Directory 11. Type the following command to view all of the files in the directory: C:\WINDOWS\system32\LogFiles\MSFTPSVC1>dir ``` :\WINDOWS\system32\LogFiles\MSFTPSVC1>dir Volume in drive C has no label. Volume Serial Number is 7834-3125 Directory of C:\WINDOWS\system32\LogFiles\MSFTPSVC1 РΜ <DIR> PM <DIR> e \times 100118.log PM PM 17,104,896 ex1205 17,112,181 bytes 10:19 РΜ 4 File(s) 1,433,866,240 bytes free Dir(s) 1:\WINDOWS\system32\LogFiles\MSFTPSVC1> ``` Figure 53: The FTP Log files Notice how large today's log file is, because of the Hydra Dictionary attack. 12. Type the following command to view the contents of the file: C:\WINDOWS\system32\LogFiles\MSFTPSVC1>type ex<todays date>.log Use the file with today's date. The format for the log files is year, month, day. The results will appear similar to that of the results in the picture below. ``` 02:19:21 10.10.19.148 [3]USER administrator 331 0 02:19:21 10.10.19.148 [35]USER administrator 331 0 02:19:21 10.10.19.148 [31]PASS - 530 1326 02:19:21 10.10.19.148 [13]PASS - 530 1326 02:19:21 10.10.19.148 [7]PASS - 530 1326 02:19:21 10.10.19.148 [22]PASS - 530 1326 02:19:21 10.10.19.148 [33]PASS - 530 1326 02:19:21 10.10.19.148 [33]PASS - 530 1326 02:19:21 10.10.19.148 [10]PASS - 530 1326 02:19:21 10.10.19.148 [32]PASS - 530 1326 02:19:21 10.10.19.148 [32]PASS - 530 1326 02:19:21 10.10.19.148 [4]PASS - 530 1326 02:19:21 10.10.19.148 [18]PASS - 530 1326 02:19:21 10.10.19.148 [18]PASS - 530 1326 02:19:21 10.10.19.148 [36]PASS - 530 1326 02:19:21 10.10.19.148 [36]PASS - 530 1326 02:19:21 10.10.19.148 [36]PASS - 530 1326 02:19:21 10.10.19.148 [1]PASS - 530 1326 02:19:21 10.10.19.148 [1]PASS - 530 1326 02:19:21 10.10.19.148 [3]PASS - 530 1326 ``` Figure 54: Today's FTP Log File An incorrect password results in a 530 message. A 230 means the password was correct. We can now use the find command to see if the user logged in successfully. 13. Type the following command to see if the attacker's login was successful: C:\WINDOWS\system32\LogFiles\MSFTPSVC1> type ex<today's date>.log | find "230" Use the file with today's date. The format for the log files is year, month, day. Figure 55: Today's FTP Log File We now know the date and time that the hacker successfully logged into the victim system. 14. Close all open windows and terminals. #### Task 3.2 Conclusion The xHydra program allows an attacker to perform a dictionary attack against a variety of protocols, including FTP, File Transfer Protocol. A Windows system keeps logs of connection attempts in the C:\WINDOWS\system32\LogFiles\MSFTPSVC1 directory. These logfiles can be extremely long, so a user can use the find command to parse them. #### Task 3.3 Discussion Questions - 1. What is xHydra? - 2. Where are FTP Log files stored in Windows? - 3. What is the code for a successful FTP login? - 4. How can the find command be used to locate the number 230 within a logfile? #### 5 References 1. GREP man Pages: http://unixhelp.ed.ac.uk/CGI/man-cgi?grep 2. Understanding /etc/shadow file The GNU Awk User's Guide: http://www.gnu.org/software/gawk/manual/gawk.html 3. Windows Find Command: http://www.computerhope.com/findhlp.htm 4. Files and Linux: http://www.irongeek.com/i.php?page=security/linuxlogs1 5. THC-Hydra: http://www.thc.org/thc-hydra/ ### CompTIA Security+® Lab Series ### Lab 3: Protocols and Default Network Ports - Transferring Data Using TCP/IP CompTIA Security+® Domain 1 - Network Security Objective 1.4: Implement and use common protocols Objective 1.5: Identify commonly used default network ports Document Version: 2012-08-15 (Beta) Lab Author: Jesse Varsalone **Assistant Professor** **Cyber Security** **Organization: Community College of Baltimore County** Copyright © 2003-2012 Center for Systems Security and Information Assurance (CSSIA) The development of this document is funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746; Center for Systems Security and Information Assurance (CSSIA) is an entity of Moraine Valley Community College. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy of this license can be found at http://www.gnu.org/licenses/fdl.html. #### Contents | 1 Introdu | ction | 3 | |--------------|--|----| | 2 Objectiv | ves: Implement and Use Common Protocols | 3 | | Identify Con | nmonly Used Default Network Ports | 3 | | | oology | | | 4 Lab Sett | ings | 6 | | Task 1 Usi | ng Hyper Text Transfer Protocol (HTTP) to Transfer Files | 8 | | Task 1.1 | Transferring Files with HTTP | 8 | | Task 1.2 | Conclusion | 15 | | Task 1.3 | Discussion Questions | 15 | | Task 2 Usi | ng File Transfer Protocol (FTP) to Transfer Files | 16 | | Task 2.1 | Using FTP | 16 | | Task 2.2 | Conclusion | 23 | | Task 2.3 | Discussion Questions | 23 | | Task 3 Tra | nsferring Files Securely Using SCP | 24 | | | Using SCP | | | Task 3.2 | Conclusion | 25 | | Task 3.3 | Discussion Questions | 25 | | 5 Referen | ces | 26 | #### 1 Introduction This lab is part of a series of lab exercises designed through a grant initiative by the Center for Systems Security and Information Assurance (CSSIA) and the Network Development Group (NDG), funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746. This series of lab exercises is intended to support courseware for CompTIA Security+ certification. By the end of this lab, students will be able to transfer files using the FTP, HTTP, and SCP protocols. Protocols like HTTP, FTP, and SCP can be used to transfer files from one computer to another. File transfers are unencrypted by default when the FTP or HTTP protocols are used. File transfers will be encrypted if SCP is used. In this lab, the student will have the opportunity to configure servers and utilize file transfer client utilities. This lab includes the following tasks: - Task 1 Using Hyper Text Transfer Protocol (HTTP) to transfer files - Task 2 Using File Transfer Protocol (FTP) to transfer files - Task 3 Transferring Files Securely Using SCP # 2 Objectives: Implement and Use Common Protocols Identify Commonly Used Default Network Ports It is important to know how files can be uploaded, downloaded, and securely transferred using protocols within the TCP/IP suite. Windows, Linux, UNIX, and the Mac OS X operating systems can be used as HTTP, FTP, and SSH servers. Some of the operating systems have the ability to run these servers without needing any third party applications. Windows comes with FTP and HTTP clients, while Linux, UNIX, and Mac OS come with clients for HTTP, FTP, and SCP. The third party application pscp.exe can be used on the Windows operating systems to perform secure file copies. For this lab, the following terms and concepts will be of use: **FTP** [1] – File Transfer Protocol, or FTP, can be used to transfer files from one computer to another. The FTP protocol uses the Transmission Control Protocol (TCP) and two ports, 20 and 21. Port 21 is used for the commands and port 20 is used for the data transfer. Credential and files that are transferred using FTP are sent in clear text. HTTP – Hyper Text Transfer Protocol, or HTTP, can be used to download files. The HTTP protocol uses the Transmission Control Protocol (TCP) and port 80. HTTP clients include browsers and wget.exe. Web Server software includes Microsoft's Internet Information
Services (IIS) and Apache. This is web server software, commonly used on Linux machines. However, Apache can be utilized on Windows, Mac OS X, and UNIX. **SCP** [2] – The Secure Copy Protocol, or SCP, can be used encrypt file transmissions. In order to use the SCP protocol, the destination server must be running the SSH protocol. The SSH protocol uses the Transmission Control Protocol (TCP) and port 22. Credential and files that are transferred using SCP are encrypted. **IIS** [3] – Microsoft's Internet Information Services, or IIS, is available on their server and some of their client operating systems. The administrator can configure various servers within IIS, such as FTP and HTTP servers. When IIS was first introduced there were many vulnerabilities. However, Microsoft has improved the security of IIS over the years. **Apache** [4] – This is web server software, commonly used on Linux machines. However, Apache can be utilized on Windows, Mac OS X, and UNIX. The name Apache came from the Native American tribe and the software can be used to host a website. #### 3 Pod Topology Figure 1: MSEC Network Topology #### 4 Lab Settings The information in the table below will be needed in order to complete the lab. The task sections below provide details on the use of this information. #### **Required Virtual Machines and Applications** Log in to the following virtual machines before starting the tasks in this lab: | BackTrack 5 Internal Attack Machine | 192.168.100.3 | |--|-----------------| | BackTrack 5 root password | password | | RHEL 9 Internal Victim Machine | 192.168.100.147 | | RHEL 9 root password | password | | Windows 2k3 Server Internal Victim Machine | 192.168.100.201 | | Windows 2k3 Server administrator password | password | #### BackTrack 5 Login: - 1. Click on the BackTrack 5 icon on the topology. - 2. Type **root** at the **bt login**: username prompt. - 3. Type **password** at the Password: prompt. ``` BackTrack 5 R1 – Code Name bt login: root Password: _ ``` Figure 2: BackTrack 5 login 4. To start the GUI, type **startx** at the root@bt:~# prompt. ``` [*] To start a graphical interface, type "startx". [*] The default root password is "toor". root@bt:~# startx_ ``` Figure 3: BackTrack 5 GUI start up #### **Red Hat Enterprise Linux Login:** - 1. Click on the Red Hat Linux icon on the topology. - 2. Type **root** at the rhel login: prompt. - 3. Type **password** at the Password: prompt. #### For security purposes, the password will not be displayed. 4. To start the GUI, type **startx** at the [root@rhe ~]# prompt. ``` Red Hat Enterprise Linux Server Kernel 2.6.18-308.el5 on an i686 rhel login: root Password: Last login: Sat Jun 16 11:48:58 [root@rhel ~]# startx_ ``` Figure 4: RHEL login #### Windows 2003 Server Login: - 1. Click on the Windows 2k3 Server icon on the topology (these instructions will work for both internal and external victim machines). - 2. Enter the User name, **Administrator** (verify the username with your instructor). - 3. Type in the password: **password** and click the **OK** button (verify the password with your instructor). Figure 5: Windows 2k3 login # Task 1 Using Hyper Text Transfer Protocol (HTTP) to Transfer Files Most people are familiar with the process of how to download a file from a web server. However, people who don't do network administration might not know how to configure a HTTP server. In this exercise, you will configure an Apache server on a Linux machine so that a client can download files to their machine. Apache is web server software which runs on a variety of operating systems. A version of Apache is included with BackTrack so the machine can perform web server functions. # Task 1.1 Transferring Files with HTTP #### Start the Apache Server on the Attack machine Open a terminal on the in BackTrack 5 Internal Attack system by clicking on the picture to the right of the word **System** in the task bar in the top of the screen. Start the Apache server by typing the following command at the terminal: root@bt:~#apache2ctl start Figure 6: Starting Apache 2. To verify that the Apache server is listening on port 80, type the following: root@bt:~#netstat -tan | grep 80 Figure 7: Verifying that the Apache Web Server is Running To test that the web server is functioning with a valid home page, you can attempt to connect to it from the Windows 7 machine by connecting to it from your browser. 3. Log on to the Microsoft Windows 2003 Server by clicking the **Send Ctrl-Alt-Del** link in the bottom right hand corner of the browser window. Log on to the 2003 server with the username of **Administrator** and the password of **password**. Figure 8: Logging on to Windows 2003 4. On the Windows 2003 machine, open Internet Explorer, by clicking on the shortcut to Internet Explorer on the desktop, and type the following URL: http://192.168.100.3 - You should see the message, It works!, on the webpage. Figure 9: Viewing the Default Web Page BackTrack comes with wget and several other Window's executables in the /pentest/windows-binaries directory. A binary file is an executable file. Figure 10: Windows Binaries on the BackTrack Distribution 5. To copy wget.exe to the Apache directory, type the following at the terminal: root@bt:~#cp /pentest/windows- binaries/tools/wget.exe /var/www ``` root@bt:~# cp /pentest/windows-binaries/tools/wget.exe /var/www ``` Figure 11: Copying wget.exe to the WWW Directory You will not receive a message that the file was successfully copied over. 6. To verify that the file in present in the destination directory, type the following: root@bt:~#ls /var/www Figure 12: Contents of the WWW Directory 7. Download the wget file from the BackTrack Linux machine running Apache by typing the following URL in your browser: http://192.168.100.3/wget.exe Figure 13: The URL in the Browser 8. Click the Save button at the File Download Screen. Figure 14: File Download Security Box 9. Click on My Computer, then Local Disk (C:), and then select Windows. Click Save. Figure 15: Downloading the Executable to the Windows Directory Click **Close** to close the download complete dialog box. Downloading executables to the Windows or Windows\system32 directory is a good idea because that will place the executable in the path. If an executable is in the path, you will be able to type the command from any directory on the system. 10. Open a command prompt on the Windows 2003 machine by double clicking on the cmd.exe on the desktop. Figure 16: Opening a Command Prompt on Windows 2003 11. Type the following command to verify that the wget file transferred correctly: C:\wget --help ``` Microsoft Windows [Version 5.2.3790] (C) Copyright 1985-2003 Microsoft Corp. C:\>wget --help GNU Wget 1.9.1, a non-interactive network retriever. Usage: wget [OPTION]... [URL]... Mandatory arguments to long options are mandatory for short options too. Startup: -V. --version display the version of Wget and exit. ``` Figure 17: Displaying the options for the wget command Wget is a command line utility that allows you to download web pages and files. 12. To copy **netcat** to the Apache directory on the BackTrack 5 system, type the following at the terminal: root@bt:~#cp /pentest/windows-binaries/tools/nc.exe /var/www ``` root@bt:~# cp /pentest/windows-binaries/tools/nc.exe /var/www ``` Figure 18: Copying Netcat to the WWW Directory You will not receive a message that the file was successfully copied over. 13. To verify that the file in present in the destination directory, type the following: root@bt:~#ls /var/www ``` root@bt:~# ls /var/www beef index.html nc.exe ``` Figure 19: Verifying that Netcat is in the WWW Directory 14. On the Windows 2003 system, type the following command to download nc.exe C:\wget http://192.168.100.3/nc.exe Figure 20: Starting a Netcat Listener on Port 443 15. Type the following command to verify that the netcat file transferred correctly: C:\nc -h ``` C:\>nc -h [v1.10 NT] connect to somewhere: nc [-options] hostname port[s] [ports] ... listen for inbound: nc -l -p port [options] [hostname] [port] options: -d detach from console, stealth mode -e prog inbound program to exec [dangerous!!] -g gateway source-routing hop point[s], up to 8 -G num source-routing pointer: 4, 8, 12, ... -h this cruft ``` Figure 21: Displaying the Options for the Netcat Command 16. In the BackTrack 5 terminal, type **wireshark** (all lowercase) to bring up the wireshark program. Figure 22: The Terminal Windows within BackTrack 17. Click the button that says **Don't show this message again**, and click **OK**. Figure 23: Allow Wireshark to run as root Wireshark is a protocol analyzer that allows you to capture network traffic in real time. You can also use it to analyze network traffic that you have captured previously. 18. Select file from the Wireshark menu and select open. Double click on the root folder, and then double click on the lab3 folder. Double click on the file lab3.pcap Figure 24: Selecting the lab3.pcapfile 19. From the Wireshark menu, select **File**, **Export**, **Objects**, **HTTP**. Figure 25: Parsing HTTP Objects 20. A new window will open with hostnames and filenames. You can see the names of the two files that were downloaded, wget.exe and nc.exe. When finished, click Cancel and exit Wireshark. Figure 26: The HTTP Object List #### Task 1.2 Conclusion Apache is web server software that is included with the BackTrack Linux distribution. The HTTP protocol uses port 80, and files can be downloaded from an HTTP server with a browser, such as Internet Explorer, or a command line utility like wget. You can parse out objects that were transferred via the HTTP protocol over port 80 within Wireshark. #### Task 1.3 Discussion Questions - 1. What is the command to check to see if the web server is running on Linux? - 2. How do you parse HTTP objects out of Wireshark? -
3. How can you display all of the options for the wget command? - 4. What does HTTP stand for and what port does it use? # Task 2 Using File Transfer Protocol (FTP) to Transfer Files File Transfer Protocol, or FTP, uses Transmission Control Protocol and ports 20 and 21. FTP can be used to upload or download files. FTP sends everything across the wire in clear text by default, so its use should be avoided in favor of SCP if at all possible. # Task 2.1 Using FTP You can use FTP from a browser or from the command line. FTP is more powerful from the command line and offers many more options. You can use FTP to upload or download files, as long as the account you are using has permission. Some ftp sites allow anonymous access, while others require a username and password. By default, all transmissions using the FTP protocol are sent over the wire in clear text. 1. Open a command prompt on the internal Windows 2003 machine by double clicking on the cmd-shortcut on the Desktop. Figure 27: Opening a Command Prompt on Windows 2003 By default, users who connect to the FTP server on this Windows 2003 system will see the files and folders located within the **C:\Inetpub\ftproot** directory. To view which files users will see when they connect to your FTP server, type C:\dir C:\Inetpub\ftproot Figure 28: Viewing the ftproot directory Copy the Bliss file to the C:\Inetpub\ftproot directory by typing the following: C:\ copy c:\WINDOWS\web\Wallpaper\Bliss.jpg c:\Inetpub\ftproot Figure 29: Copying a JPG file to the C:\Inetpub\ftproot directory You should receive the message, 1 file(s) copied, if your file is copied successfully. Now, we will transfer the file from the Windows 2003 Server to the BackTrack 5 system. 4. Open a terminal on the BackTrack 5 system by clicking on the picture to the right of the word **System** in the task bar in the top of the. Connect to the FTP server by typing the following command: root@bt:~#ftp 192.168.100.201 ``` Applications Places System >_ ^ v x root@bt: ~ File Edit View Terminal Help root@bt:~# ftp 192.168.100.201 Connected to 192.168.100.201. 220 Microsoft FTP Service Name (192.168.100.201:root): ``` Figure 30: FTP to a Remote Machine 5. For the username, type ftp. For the password, type securityplus. For security reasons, the password will not be displayed when you type it. ``` Name (192.168.100.201:root): ftp 331 Anonymous access allowed, send identity (e-mail name) as password. Password: 230-Welcome to the ptest.org FTP site. 230 Anonymous user logged in. Remote system type is Windows_NT. ftp> ``` Figure 31: Logging in as FTP FTP Sites allowing anonymous connections will allow you to login as **ftp** or **anonymous**. Note: you should receive the message *Anonymous user logged in*. 6. Type the following command to view the files on the remote Windows system: ftp>**Is** ``` ftp> ls 200 PORT command successful. 150 Opening ASCII mode data connection for /bin/ls. 03-25-03 07:00AM 51127 Bliss.jpg 226 Transfer complete. ftp> ``` Figure 32: Viewing the files on the Remote FTP Site Before the file can be transferred, you need to switch to binary mode if you are downloading anything that is not a text file, like a picture or an executable. 7. Type the following command to switch to binary mode: ftp>**bin** ``` ftp> bin 200 Type set to I. ftp> ``` Figure 33: Switching to Binary Mode 8. To download the file, type the following command (case sensitive): ftp>get Bliss.jpg ``` ftp> get Bliss.jpg local: Bliss.jpg remote: Bliss.jpg 200 PORT command successful. 150 Opening BINARY mode data connection for Bliss.jpg(51127 bytes) 226 Transfer complete. 51127 bytes received in 0.04 secs (1223.6 kB/s) ftp> ``` Figure 34: Downloading the File 9. Close the ftp session by typing the following command at the ftp prompt: ftp>**bve** Figure 35: Leaving the FTP Site View the file by looking within root's home folder. 10. Click on **Places** from the menu bar and select **Home Folder**, view **Bliss.jpg**. Close the Home Folder when you are finished. Figure 36: Viewing the Uploaded File This Windows 2003 FTP Server allows users to download, but not upload files. In order to allow users to upload files, we must enable write permissions on the FTP server. 11. On the Windows 2003 server, click on the **Start** button, select **Administrative Tools**, and open **Internet Information Services (IIS) Manager**. Figure 37: Opening Internet Information Services (IIS) Manager 12. Expand FTP Sites by clicking the plus (+) sign next to it. Right click on Default FTP Site and go to Properties. Click on the Home Directory Tab. Check the **Write** box and click **OK**. Close the **Default FTP Site Properties** window. Close the Internet Information Services (IIS) Manager. Figure 38: Allowing Write Access for the FTP Site 13. On the BackTrack 5 system, copy the BackTrack wallpaper to the root directory by typing the following: root@bt:~#cp /usr/share/wallpapers/backtrack/Backtrack_5_blue.jpg /root root@bt:~# cp /usr/share/wallpapers/backtrack/Backtrack_5_blue.jpg /root Figure 39: Copying the Wallpaper file 14. Type the following command to view the file in the root directory: root@bt:~#ls Figure 40: Listing the File with the Is command 15. Connect to the FTP server by typing the following command: root@bt:~#ftp 192.168.100.201 Figure 41: Copying a JPG file to the C:\Inetpub\ftproot directory 16. For the username, type ftp. For the password, type securityplus. For security reasons, the password will not be displayed when you type it. ``` Name (192.168.100.201:root): ftp 331 Anonymous access allowed, send identity (e-mail name) as password. Password: 230-Welcome to the ptest.org FTP site. 230 Anonymous user logged in. Remote system type is Windows_NT. ftp> ``` Figure 42: Logging in as FTP FTP Sites allowing anonymous connections will allow you to login as **ftp** or **anonymous**. Note: you should receive the message, *Anonymous user logged in*. 17. Type the following command to view the files on the remote Windows system: ftp>**ls** ``` ftp> ls 200 PORT command successful. 150 Opening ASCII mode data connection for /bin/ls. 03-25-03 07:00AM 51127 Bliss.jpg 226 Transfer complete. ftp> ``` Figure 43: Viewing the files on the Remote FTP Site Before the file can be transferred, you need to switch to binary mode if you are downloading anything that is not a text file, like a picture or an executable. 18. Type the following command to switch to binary mode: ftp>bin Figure 44: Switching to Binary Mode 19. To upload the file, type the following command (case sensitive): ftp>put Backtrack_5_blue.jpg ``` ftp> put Backtrack_5_blue.jpg local: Backtrack_5_blue.jpg remote: Backtrack_5_blue.jpg 200 PORT command successful. 150 Opening BINARY mode data connection for Backtrack_5_blue.jpg. 226 Transfer complete. 880117 bytes sent in 0.10 secs (8345.1 kB/s) ftp> ``` Figure 45: Uploading the File 20. Close the ftp session by typing the following command at the ftp prompt: ftp>**bye** Figure 46: Leaving the FTP Site 21. On the Windows 2003 Machine, double click on My Computer, double click on local disk (C:). Double click on the Inetpub directory, then double click on ftproot. Double click on the Backtrack_5_blue.jpg file to open it. Figure 47: The Uploaded FTP File 22. Close all open windows. ### Task 2.2 Conclusion Like HTTP, the FTP protocol can be used to download file. FTP also can be used to upload files is the user has permission to do so. Many ftp sites allow users to login anonymously. FTP uses Ports 20 and 21 and transmits data in clear text by default. #### Task 2.3 Discussion Questions - 1. What are the two ports that FTP uses? - 2. What is the command to upload a file to an FTP server? - 3. Which ftp command should be used before uploading a picture file? - 4. What is the default directory where Windows FTP files are stored? # Task 3 Transferring Files Securely Using SCP In this section, you will securely copy a file from the BackTrack Linux machine to the Linux machine running Redhat Enterprise Linux (RHEL) using SCP. Unlike FTP transmissions, SCP transmissions are encrypted. Port 22, Secure Shell is used for SCP. # Task 3.1 Using SCP SCP can be used to securely send a file to a remote system. Open a terminal on the BackTrack 5 system by clicking on the picture to the right of the word System in the task bar in the top of the screen. Copy the BackTrack wallpaper to the root directory by typing the following: root@bt:~#cp /usr/share/wallpapers/backtrack/Backtrack 5 camo.jpg /root ``` root@bt:~# cp /usr/share/wallpapers/backtrack/Backtrack_5_camo.jpg /root ``` Figure 48: Copying the BackTrack Wallpaper Type the following command to view the file in the root directory: root@bt:~#Is Backtrack 5 camo.jpg ``` root@bt:~# ls Backtrack_5_camo.jpg Backtrack_5_camo.jpg ``` Figure 49: The Wallpaper File in root's Home Directory 3. Copy the file to the root directory of the RHEL machine by typing the following: root@bt:~#scp Backtrack_5_camo.jpg root@192.168.100.147:/root/Backtrack_5_camo.jpg ``` root@bt:~# scp Backtrack_5_camo.jpg root@192.168.100.147:/root/Backtrack_5_camo.jpg ``` Figure 50: Using the scp command Hit the Enter key after you type the scp command on your BackTrack Linux machine. 4. If prompted, type **yes** when you are asked if you are sure you want to continue connecting. If you do not receive the prompts (as seen below), continue to #5. ``` root@bt:~# scp Backtrack_5_camo.jpg root@192.168.100.147:/root/Backtrack_5_camo.jpg The authenticity of host '192.168.100.147 (192.168.100.147)' can't be established. RSA key fingerprint is c8:79:74:50:d9:78:c1:83:9c:e4:a1:53:4c:7d:15:3a. Are you sure you want to continue connecting (yes/no)? yes ``` Figure 51: Connection Warning 5. Type the password of **password**. The file transfer status should go to 100%. Figure 52: Transferred File Status 6. On the Red Hat system, click on **Places** and select **Home Folder** to view the copied file. Close the window when you are finished. Figure 53:
Transferred File #### Task 3.2 Conclusion The Secure Copy Protocol is a way to securely transfer files from one system to another. Unlike FTP, SCP encrypts the transmission so usernames and passwords will not be seen going across the wire like they can be with FTP. Use SCP rather than FTP whenever possible. #### Task 3.3 Discussion Questions - 1. What port does SSH and SCP use by default? - 2. What does SCP stand for? - 3. How is SCP different from the FTP protocol? - 4. What benefits does using SCP provide over other protocols? ### 5 References 1. FTP Commands: http://unixhelp.ed.ac.uk/CGI/man-cgi?ftp 2. SCP: http://kb.iu.edu/data/agye.html 3. Internet Information Services: http://www.iis.net/ 4. Apache: http://www.apache.org/ 5. BackTrack Linux: http://www.backtrack-linux.org/ # CompTIA Security+® Lab Series # Lab 4: Protocols and Default Network Ports - Connecting to a Remote System CompTIA Security+® Domain 1 - Network Security Objective 1.4: Implement and use common protocols Objective 1.5: Identify commonly used default network ports Document Version: 2012-08-15 (Beta) Lab Author: Jesse Varsalone Assistant Professor Cyber Security **Organization: Community College of Baltimore County** Copyright © 2003-2012 Center for Systems Security and Information Assurance (CSSIA) The development of this document is funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746; Center for Systems Security and Information Assurance (CSSIA) is an entity of Moraine Valley Community College. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy of this license can be found at http://www.gnu.org/licenses/fdl.html. # Contents | 1 Introdu | ction | 3 | |---------------------|---|----| | 2 Objecti | ves: Implement and Use Common Protocols | 3 | | Identify Con | nmonly Used Default Network Ports | 3 | | 3 Pod Toj | oology | 5 | | 4 Lab Set | tings | 6 | | Task 1 Co | nnecting to a Windows System through the Command Line | 9 | | Task 1.1 | Using TELNET to Perform Remote Administration | 9 | | Task 1.2 | Conclusion | 16 | | Task 1.3 | Discussion Questions | 16 | | Task 2 Co | nnecting to a Linux System through the Command Line | 17 | | Task 2.1 | Using SSH to Connect to a Remote Linux System | 17 | | Task 2.2 | Conclusion | 24 | | Task 2.3 | Discussion Questions | 24 | | Task 3 An | alyzing Remote Connections in Network Traffic | 25 | | Task 3.1 | Using Wireshark to Connect to a Remote Linux System | 25 | | Task 3.2 | Conclusion | 30 | | Task 3.3 | Discussion Questions | 30 | | 5 Referer | nces | 31 | #### 1 Introduction This lab is part of a series of lab exercises designed through a grant initiative by the Center for Systems Security and Information Assurance (CSSIA) and the Network Development Group (NDG), funded by the National Science Foundation's (NSF) Advanced Technological Education (ATE) program Department of Undergraduate Education (DUE) Award No. 0702872 and 1002746. This series of lab exercises is intended to support courseware for CompTIA Security+ certification. By the end of this lab, students will be able to connect to remote systems running Windows and Linux and run commands to perform administrative tasks. Students will use the TELNET protocol to connect to remote Windows system and the SSH protocol to connect to a system running Linux. Students will then analyze both protocols within network traffic to determine whether the protocol uses encryption or clear text. This lab includes the following tasks: - Task 1 Connecting to a Windows System through the Command Line - Task 2 Connecting to a Linux System through the Command Line - Task 3 Analyzing Remote Connections in Network Traffic # 2 Objectives: Implement and Use Common Protocols Identify Commonly Used Default Network Ports Network Administrators often have to perform maintenance on servers from remote locations. The server could be on a system within the same building or across the globe. Network administration can be done remotely through a GUI based program like Microsoft Terminal Services or Virtual Network Connector (VNC), but the use of command line tools like TELNET and SSH is extremely common. It is very common to have a Linux system running without a GUI, and there are even some distributions of Windows, like Server Core, that have no GUI interface. It is critically important for network administrators to understand command line utilities in order to have a good grasp of computer security concepts. **TELNET** – The TELNET protocol, which uses port 23, allows someone to remotely administrator a computer, router, and switch. All traffic sent using the TELNET protocol is sent in clear text, which means usernames and passwords will be visible to anyone examining the traffic. For security reasons, the use of TELNET should be avoided. **SSH** [1] – Secure Shell, which uses port 22, allows a user to securely connect to a remote machine. Unlike TELNET connections that are in clear text, SSH connections are encrypted. While Linux and Mac have support for SSH natively, Windows does not. **Windows Command Shell** – The Windows command shell allows users to interact with the operating system from a command line environment. Virtually anything that can be done in the Graphical User Interface, or GUI, in Windows can be done from the command line. TELNET can be used to perform remote command line administration. **Linux Bash Shell** – The Linux Bourne Again Shell, or Bash shell, is one of many shells that are available in a Linux environment. Linux servers are often managed from the command line; therefore network administrators need to be comfortable with bash. **Wireshark** [2] — Wireshark is a protocol analyzer that will allow you to capture traffic as well as analyze network traffic. Wireshark can be used to inspect traffic and examine the clear text communication of TELNET and encrypted communication of SSH. # 3 Pod Topology Figure 1: MSEC Network Topology # 4 Lab Settings The information in the table below will be needed in order to complete the lab. The task sections below provide details on the use of this information. # **Required Virtual Machines and Applications** Log in to the following virtual machines before starting the tasks in this lab: | BackTrack 5 Internal Attack Machine | 192.168.100.3 | | |--|-----------------|--| | BackTrack 5 root password | password | | | Windows 2k3 Server Internal Victim Machine | 192.168.100.201 | | | Windows 2k3 Server administrator password | password | | | Red Hat Enterprise Internal Victim Machine | 192.168.100.3 | | | Red Hat Enterprise root password | password | | | Win7 Internal Attack Machine | 192.168.100.201 | | | Win7 Attack Machine student password | password | | # BackTrack 5 Login: - 1. Click on the BackTrack 5 icon on the topology. - 2. Type root at the bt login: username prompt. - 3. Type **password** at the Password: prompt. ``` BackTrack 5 R1 – Code Name bt login: root Password: _ ``` Figure 2: BackTrack 5 login 4. To start the GUI, type **startx** at the root@bt:~# prompt. ``` [*] To start a graphical interface, type "startx". [*] The default root password is "toor". root@bt:~# startx_ ``` Figure 3: BackTrack 5 GUI start up #### Windows 2003 Server Login: - 1. Click on the Windows 2k3 Server icon on the topology (these instructions will work for both internal and external victim machines). - 2. Enter the User name, **Administrator** (verify the username with your instructor). - 3. Type in the password: **password** and click the **OK** button (verify the password with your instructor). Figure 4: Windows 2k3 login #### Red Hat Enterprise Linux Login: - 1. Click on the Red Hat Linux icon on the topology. - 2. Type **root** at the rhel login: prompt. - 3. Type **password** at the Password: prompt. #### For security purposes, the password will not be displayed. 4. To start the GUI, type **startx** at the [root@rhe ~]# prompt. ``` Red Hat Enterprise Linux Server Kernel 2.6.18-308.el5 on an i686 rhel login: root Password: Last login: Sat Jun 16 11:48:58 Iroot@rhel ~]# startx_ ``` Figure 5: RHEL login ### Windows 7 Login: - 1. Click on the Windows 7 icon on the topology. - 2. Enter the username, **student** (verify the username with your instructor). - 3. Type in the password, **password** and hit enter to log in (verify the password with your instructor). Figure 6: Windows 7 login # Task 1 Connecting to a Windows System through the Command Line For a variety of reasons, network administrators may need to perform tasks on a remote system. TELNET can be used to perform remote administration on computers, routers, switches, and other devices. The disadvantage of using TELNET is that it sends everything across the wire in clear text including usernames, passwords, and commands. For this reason, the use of TELNET should be avoided if possible. First, we will scan the victim machine to determine if the TELNET port is open. We will specify the default TELNET port of 23 when conducting the nmap scan. # Task 1.1 Using TELNET to Perform Remote Administration #### Open a Command Prompt to Get Started 1. Open a command prompt on the Windows 7 machine by double clicking on the **cmd.exe** icon on the Desktop. Figure 7: Opening a Command Prompt on Windows 7 Before you start, determine the IP Address of the Windows 7 machine by typing: C:\ipconfig ``` C:\>ipconfig Windows IP Configuration Ethernet adapter Local Area Connection: Connection-specific DNS Suffix .: Link-local IPv6 Address : fe80::78d5:d63:3ede:f5f5%11 IPv4 Address : 192.168.100.5 Subnet Mask : 255.255.255.0
Default Gateway : 192.168.100.1 ``` Figure 8: The IP Address Information of the Windows 7 Machine 3. Type the following to determine if port 23 is open on the remote system. C:\nmap 192.168.100.201 -p 23 Figure 9: The Results of an Nmap Scan The results of the Nmap scan indicate that the TELNET port is open on the remote system. In order to connect via TELNET, you need to have a user account and the password for the remote system. This information is sent over the network in clear text. The TELNET client is not installed by default on Windows Vista or Windows 7. It must be added through the Add Programs and Features applet in the Control Panel. We have already added the TELNET client feature on the Windows 7 Virtual Machine. 4. From the command prompt, type the following command C:\telnet 192.168.100.201 ``` C:\>telnet 192.168.100.201 ``` Figure 10: Using the TELNET command in Windows 5. You will be warned that it might not be safe to send your password. Type **y** to send it anyway. ``` Welcome to Microsoft Telnet Client Escape Character is 'CTRL+]' You are about to send your password information to a remote computer in Internet zone. This might not be safe. Do you want to send anyway(y/n): y_ ``` Figure 11: Warnings about the Danger of Using Telnet You will be prompted for the username and password. The username will be displayed as you type it, but the password is not displayed for security reasons. 6. For the username, type **administrator** and for the password type **password**. ``` Login using username and password Welcome to Microsoft Telnet Service login: administrator password: _ ``` Figure 12: Inputting the Username and Password of the Remote System After a successful login, you will receive the message *Welcome to Microsoft Telnet Server*. You will start in the **Documents and Settings Folder** of the user's account. Figure 13: A Successful TELNET connection was made 7. Type the following command to change directories to the root of the C drive: C:\Documents and Settings\Administrator.WIN2K3DC>cd \ ``` C:\Documents and Settings\Administrator.WIN2K3DC>cd \ C:\> ``` Figure 14 Changing Directories to the Root of C: 8. Type the following command to view the IP Address information of the remote system running Windows Server 2003 you are connected to through TELNET. C:\ >ipconfig Figure 15: Displaying the IP Address of the Remote machine To view the active telnet connection from the Windows 7 machine to the Windows Server 2003 machine in the network connections, type the following: C:\netstat -an | findstr 23 Figure 16: Viewing the TELNET Network Connection from Windows 7 to Server 2003 The netstat data first indicates that the Windows Server 2003 is listening on port 23: TCP 0.0.0.0:23 0.0.0.0:0 LISTENING The second connection indicates a TELNET connection from the Windows 7 with the IP Address of 192.168.100.5 to Windows Server 2003 with IP Address 192.168.100.201. The other two connections displayed are dealing with Network Time Protocol, which uses UDP and port 123. TELNET, on the other hand, uses TCP and port 23. 10. Type the following command to view the files on the root of the C drive. These are the files on the C: Drive of the remote Windows 2003 Server system. C:\dir ``` :\>dir Volume in drive C has no label. Volume Serial Number is 7834-3125 Directory of C:\ 07/03/2008 0 AUTOEXEC.BAT /03/2008 04:50 PM 0 CONFIG.SYS 24/2011 PM 734 DcList.xml 24/2011 PM DNSRecords.txt 11/2010 <DIR> Documents and Settings 28,160 DOMAIN-RENAME-README.DOC /25/2003 :00 AM 1,320 Domainlist.xml 24/2011 :10 PM 25/2003 41,984 GPFIXUP.EXE :00 AM /03/2008 :06 PM <DIR> I386 /18/2010 <DIR> AM Inetpub /02/2009 :30 PM <DIR> Program Files /25/2003 120,320 RENDOM.EXE :00 AM /21/2008 /25/2011 PM <DIR> Temp <DIR> WINDOWS 07/03/2008 04:50 PM <DIR> dugmw 193,220 bytes File(s) 1,357,406,208 bytes free ``` Figure 17: Displaying the Files on the Remote System In the next step, we will make a text file on a remote system through the command line. Notepad and Wordpad are GUI applications and cannot be utilized in a TELNET session. Using the **edit** command is not a good idea either because there is a good likelihood you will get stuck in the editor. In order to create a text file, we will use the echo command along with a redirect (>). This technique can be used in Windows or Linux. 11. Type the following command to create a text file through the command line: C:\echo I am creating a text file here > securityplus.txt # C:\>echo I am creating a text file here > securityplus.txt Figure 18: Creating a Text File Using Echo 12. Type the following command to view the newly created file. C:\dir s* Figure 19: Listing the File Created on the Remote System 13. To view what is written inside the file, type the following command: C:\type securityplus.txt ``` C:\>type securityplus.txt I am creating a text file here ``` Figure 20: Displaying the Contents of the Text File on the Remote System There are attributes you can add to a file from the command line, including: - Hidden File is not displayed in a directory listing. - Read Only File is readable, but cannot be changed or deleted. - System File is used by the operating system. - Archive File is used for backup purposes. Attributes can be applied to files by using the **attrib** command. The attrib command followed by a plus (+) and the name of the file will add the attribute to the file. The attrib command followed by a minus sign (-)and the name of the file will remove the attribute from the file. A directory (**dir**) command along with a forward slash and the symbol representing the attribute will display the files with those attributes. 14. To hide the text file, type the following command C:\attrib +H securityplus.txt ``` C:\>attrib +H securityplus.txt ``` Figure 21: Hiding a File on the Remote System using the attrib Command 15. After applying the attribute, try to view the hidden securityplus.txt file C:\dir s* ``` C:\>dir s* Volume in drive C has no label. Volume Serial Number is 7834-3125 Directory of C:\ File Not Found ``` Figure 22: The Hidden File is not displayed on the Remote System 16. To display the hidden securityplus.txt file, type the following command: C:\dir s* /ah Figure 23: Displaying the Hidden File on the Remote System Displaying, creating, and hiding files can be done on a remote system using TELNET. An Administrator can also perform other tasks, such as account and service maintenance 17. To create a user on the remote system type the following command: C:\net user admin1 P@ssword /add C:\>net user admin1 P@ssword /add The command completed successfully. Figure 24: Adding a User through the Command Line You should receive the message that the command completed successfully. The user created will have an account named admin1 and a password of P@ssw0rd. The administrator logged into the system remotely through the command line can also view, stop, and start services by using the net start and net stop commands. One service that should not be stopped is the TELNET service or the connection will die. 18. To stop the **Automatic Updates** service on the remote machine, type: C:\ net stop "Automatic Updates" ``` C:\>net stop "Automatic Updates" The Automatic Updates service is stopping. The Automatic Updates service was stopped successfully. ``` Figure 25: Stopping the Automatic Updates Service 19. Type **exit** to leave the command prompt session on the remote machine ``` C:\>exit Connection to host lost. C:\>_ ``` Figure 26: Leaving the TELNET session 20. To be sure that your TELNET session to the Windows Server is disconnected, type ipconfig and the IP Address of the Windows 7 System should be displayed again. C:\ipconfig ``` C:\>ipconfig Windows IP Configuration Ethernet adapter Local Area Connection: Connection-specific DNS Suffix .: Link-local IPv6 Address : fe80::78d5:d63:3ede:f5f5%11 IPv4 Address : 192.168.100.5 Subnet Mask : 255.255.255.0 Default Gateway : 192.168.100.1 ``` Figure 27: The IP Address Information of the Windows 7 Machine #### Task 1.2 Conclusion A network administrator can use TELNET to remotely connect to a computer to run commands. A TELNET connection can be used to display and create files on the remote system, as well as perform other administrative tasks, like maintenance of accounts and services. TELNET uses TCP port 23 and sends information over the network in clear text. #### Task 1.3 Discussion Questions - 1. What command can be used to show an active TELNET connection? - 2. What is the command that can be used to display files on a remote system when an administrator is connected via a TELNET session? - 3. How can you create a file on a remote system during a TELNET session? - 4. What command can be used to determine if a remote system is running TELNET? # Task 2 Connecting to a Linux System through the Command Line Most people would agree with the fact that since its inception, Linux has always been an operating system that took security seriously. Most distributions of Linux come with a built in SSH server as well as an SSH client that will allow you to connect to servers running SSH. The SSH, or secure shell, protocol, use Transmission Control Protocol port 22. Unlike TELNET, everything sent over the wire using SSH is encrypted. # Task 2.1 Using SSH to Connect to a Remote Linux System #### Warning - This must be done before starting Task 2: The Red Hat 9 Enterprise Linux Internal Victim machine needs to be logged into using the **root** username with the password: **password** (the password will not be displayed for security reasons). Once you have logged in, issue the command **startx** to start the GUI (Graphical User Interface). See Lab Settings, section 4 for details. **Until this procedure has been performed, Task 2 cannot be started.** From a command prompt on the Windows 7 virtual machine, type the following to determine if port 22 is open on the remote Linux
system: C:\>nmap 192.168.100.201 -p 22 ``` C:\>nmap 192.168.100.147 -p 22 Starting Nmap 5.51 (http://nmap.org) at 2012-01-21 14:38 Eastern Nmap scan report for 192.168.100.147 Host is up (0.034s latency). PORT STATE SERVICE 22/tcp open ssh MAC Address: 00:50:56:98:00:09 (VMware) Nmap done: 1 IP address (1 host up) scanned in 15.03 seconds ``` Figure 28: Determining if SSH Port 22 is Open on the Remote Machine Microsoft Windows does not have a Secure Shell (SSH) client built into the operating system. However, third party SSH client and server applications can be used to make SSH connections to other systems, or to allow incoming SSH connections. PuTTY is a 3rd party application that will allow you to connect to a remote system running SSH. 2. Double click on putty.exe to launch the third party SSH client application. Figure 29: Launching putty.exe on the Windows 7 Machine The PuTTY Configuration will open. Users can choose the following connection types: - Raw - Telnet - Rlogin - SSH - Serial PuTTY makes a great choice for Windows Vista and Windows 7 users who need to connect to Cisco devices because Windows no longer comes with HyperTerminal. 3. In the Host Name (or IP Address) box, type IP **192.168.100.147** Figure 30: PuTTY Configuration Dialog Box 4. A PuTTY Security Alert Dialog will pop up. Click **Yes** to the Warning. Figure 31: Security Alert Dialog 5. When you receive the login prompt, type **root**. The password is **password**. Note: the password will not appear when you type it for security reasons. ``` 192.168.100.147 - PuTTY login as: root Access denied root@192.168.100.147's password: ``` Figure 32: Logging in to the Remote Machine via SSH After a successful login, you will receive a *Last Login* message and a prompt. ``` Last login: Sat Jan 21 16:21:10 2012 from 192.168.100.5 [root@rhel ~]# ``` Figure 33: A Successful Login to the SSH Server Displays the Last Login Time 6. Checking the IP Address of the machine you are connecting to remotely is never a bad idea. To display IP Address information in Linux, type the following: [root@rhel ~]#ifconfig Figure 34: Displaying the IP Address of the Remote Linux Machine The first IP Address shown is for the first NIC in the system. The second is the loopback address. 7. To view the TCP secure shell (SSH) connection between the Windows 7 machine and the Linux machine, type the following command: [root@rhel ~]#netstat -tan | grep 22 Figure 35: Viewing the Established SSH connection The **netstat** command, which works in Windows and Linux, displays active network connections. By using the —tan switch, you will only display TCP connections. You can narrow down the output by piping the command into a GREP, Global regular Expressions Print, and using port 22. The first line of the netstat output tells you that the Linux machine is listening on port 22. The second line of the netstat output shows the established connection between the Windows 7 system with the IP Address of 192.168.100.5 and the Red Hat Linux system with the IP Address of 192.168.100.147. To find out what directory you reside in on the Linux file system, type **pwd**. The command pwd is short for both *print working directory* and *present working directory*. The tilde (~) symbol tells you the current user is in their home directory. 8. To view your current location on the file system in Linux, type: [root@rhel ~]#pwd ``` [root@rhel ~]# pwd /root ``` Figure 36: Printing the Present Working Directory 9. List files in the root's home directory by typing the following: [root@rhel ~]#**Is** ``` [root@rhel ~]# ls anaconda-ks.cfg customers.txt Desktop install.log.syslog bootstrap.sh Cyclops.pub install.log RPM-GPG-KEY.dag.txt ``` Figure 37: Using the Is command in Linux to View Files and Folders The **Is** command usually display files as different colors than folders. Also, files with executable permissions are typically displayed using a green font color. Another common practice is to have folders start with a capital letter, although this is not a requirement. 10. Creating a file in Linux can be done by using the vi editor or by using the echo command and a redirect symbol (>), like in Microsoft Windows. To make a file called **securityplus.txt** with the phrase "this is a file" in it, type the following: [root@rhel ~]#echo this is a file > securityplus.txt ``` [root@rhel ~] # echo this is a file > securityplus.txt ``` Figure 38: Creating a File in Linux 11. Type Is to view the created securityplus.txt file within root's home directory. [root@rhel ~]#Is ``` [root@rhel ~] # ls anaconda-ks.cfg customers.txt Desktop install.log.syslog securityplus.txt bootstrap.sh Cyclops.pub install.log RPM-GPG-KEY.dag.txt ``` Figure 39: Displaying Files with the Is Command In Linux, the **mv** (move) command is used to rename a file. By placing a period (.) at the beginning of a file name, that file will be hidden. 12. To hide the file, rename it using the mv command and put a period in the front. [root@rhel ~]#mv securityplus.txt .securityplus.txt ``` [root@rhel ~] # mv securityplus.txt .securityplus.txt ``` Figure 40: Renaming and Hiding a File The file is now hidden and will not be displayed when **Is** is used without any switches. 13. Type Is to see that the securityplus.txt file is no longer displayed. [root@rhel ~]#Is ``` [root@rhel ~]# 1s anaconda-ks.cfg customers.txt Desktop install.log.syslog bootstrap.sh Cyclops.pub install.log RPM-GPG-KEY.dag.txt ``` Figure 41: The Hidden File is not Displayed with Is 14. To view hidden files within the root's home directory, the following: [root@rhel ~]#Is -a ``` root@rhel ~]# ls -a .serverauth.3738 .recently-used.xbel .serverauth.6047 .cshrc .serverauth.6774 anaconda-ks.cfg customers.txt .gstreamer-0.10 Cyclops.pub .gtkrc-1.2-gnome2 RPM-GPG-KEY.dag.txt Desktop .ICEauthority .securityplus.txt bash_history .bash logout .tcshrc .bash_profile .dmrc install.log .serverauth.2934 _____bash_profile.old .esd auth .esd_auth .lesshst .serverauth.3607 .Xauthority bash profile.old~ .gconf .serverauth.3639 bashrc .serverauth.3697 .mysql_history ``` Figure 42: Displaying Hidden Files in Linux Displaying, creating, and hiding files can be done on a remote system using SSH. The root account can also perform other tasks, such as account and service maintenance 15. To add a user to the Remote Linux system, type the following: [root@rhel ~]#useradd admin1 ``` [root@rhel ~]# useradd admin1 ``` Figure 43: Adding a User to the Remote Linux System The **passwd** and **shadow** files in the /etc directory store the names of the users. The shadow file contains also stores the user's password hash. Linux users can cat, which stands for concatenate, to display the contents of a file like the shadow file. 16. To view the newly created user, type the following command: [root@rhel ~]#cat /etc/shadow ``` [root@rhel ~]# cat /etc/shadow root:1xJ5D7Psr$OgYh7cirVucXWk1F5Xn8f.:14713:0:99999:7::: bin:*:14713:0:99999:7::: daemon:*:14713:0:999999:7::: adm:*:14713:0:99999:7::: ``` Figure 44: Viewing the Shadow File on the Remote Linux System Some files can contain pages of information. To narrow the display results, the grep command can be used. GREP, which stands for Global Regular Expressions Print, can be used to search for a character or a string of characters within a given output set. 17. To view the admin1 user created within the shadow file, type the following: [root@rhel ~]#cat /etc/shadow | grep admin1 ``` [root@rhel ~]# cat /etc/shadow | grep admin1 admin1:!!:15360:0:99999:7::: ``` Figure 45: Using GREP to Filter Search Results The service command can be used to stop, start, and view server status. 18. To view the status of the **Very Secure FTP Daemon9** (vsftpd), type the following: [root@rhel ~]#service vsftpd status ``` [root@rhel ~]# service vsftpd status vsftpd (pid 3255) is running... ``` Figure 46: Viewing the Status of the vftpd Service 19. To stop the **vsftpd** service on the remote Linux system, type the following: [root@rhel ~]#**service vsftpd stop** ``` [root@rhel ~]# service vsftpd stop Shutting down vsftpd: [OK] ``` Figure 47: Shutting Down the vsftpd service 20. To end the SSH session on the Remote Linux system, type the following: [root@rhel ~]#exit Figure 48: Typing Exit to Leave the SSH Session The PuTTY Window will close and the SSH session will be terminated. ## Task 2.2 Conclusion Secure Shell, or SSH, allows users to remotely connect and administer computers running the Linux, Unix, and Mac operating systems as well other network devices such as routers and switches. Secure Shell encrypts the traffic, unlike TELNET, so the usernames, passwords, and commands will not be visible to anyone inspecting network traffic. It is strongly recommended that SSH be used instead of TELNET when possible. #### Task 2.3 Discussion Questions - 1. What port does Secure Shell use? - 2. Is there a native SSH client or server on Microsoft Windows system? - 3. What is the file in Linux that contains the password hash? - 4. What are two methods that can be used for creating a file during a remote secure shell (SSH) connection within Linux? ## Task 3 Analyzing Remote Connections in Network Traffic In this section, you will analyze a network capture file with TELNET and SSH traffic. You will be able to view the clear text communication during the TELNET session, but you will be unable to view the encrypted communication of the SSH connection. # Task 3.1 Using Wireshark to Connect to a Remote Linux System Wireshark is a protocol analyzer, which will allow you to inspect and capture network traffic. The 32-bit and 64-bit versions can be downloaded from www.wireshark.org. #### Open a Terminal to Get Started 1. Open a terminal on the BackTrack 5 system by clicking on the picture to the right of the word **System** in the task bar in the top of the screen. Type **wireshark** (all lowercase) to bring up the Wireshark program. Figure 49: The Terminal Windows within BackTrack 2. If you receive
a message about running Wireshark as root can be dangerous, click the button that says **Don't show this message again**, and click **OK**. Figure 50: Allow Wireshark to run as root 3. Select **file** from the Wireshark menu and select **open**. Double click on the **root** folder, then double click on the **lab4** folder. Double click on the file **telnetssh.pcap** Figure 51: Opening the Wireshark file Examining TELNET traffic can be done by using either of the two filters within Wireshark: - telnet - tcp.port == 23 If TELNET is used on a Windows system, the following filter can be used (case sensitive): • frame contains Microsoft Windows Examining SSH traffic can be done by using either of the two filters within Wireshark: - ssh - tcp.port == 22 - 4. To examine the TELNET traffic, type telnet in the filter pane and click **Apply**. Figure 52: The telnet Filter in the Wireshark Pane 5. Right click on the first frame in the list and select **Follow TCP Stream**. ``` ∧ ∨ × Follow TCP Stream Stream Content %.....X.....l..... $!...BJ..s.t.u.d.e.n.t.-.P.C.s.t.u.d.e.n.t.S.T.U.D.E.N.T.-.P. W.I.N.2.K.3.D.C....m.s.e.c...l.o.c.a.l... $.w.i.n.2.k.3.d.c...p.t.e.s.t...o.r.g...0.0.......0....0....lb1..j..BB,.t.e.l.n.e.t./.1.9.2...1.6.8...1.0.0...2.0.1.... C...]....%..... Telnet server could not log you in using NTLM authentication. Your password may have expired. Login using username and password Welcome to Microsoft Telnet Service login: aaddmmiinniissttrraattoorr password: password [2;1HWelcome to Microsoft Telnet Server. ``` Figure 53: Following a TCP Stream You can scroll down through the conversation to try to interpret what was happening. Notice how you can view the traffic because TELNET transmits in clear text. Both sides of the conversation between the TELNET server and client are displayed. To see a specific side of the conversation, click the arrow to the right of Entire conversation. Figure 54: The telnet Filter in the Wireshark Pane 6. Select the conversation from the client with the IP Address of 192.168.100.5 to the telnet server of 192.168.100.201 by clicking the arrow to the right of **Entire conversation**, and selecting the first conversation in the drop box. ``` ∧ ∨ × Follow TCP Stream Stream Content (.....NTLMSSP.....'...SFUTLNTVER.2.SFUTLNTMODE.Cons ole.... %.......NTLMSSP......X....\l....z..... $!...BJ..s.t.u.d.e.n.t.-.P.C.s.t.u.d.e.n.t.S.T.U.D.E.N.T.-.P. N.2.K.3.D.C....m.s.e.c...l.o.c.a.l... $.w.i.n.2.k.3.d.c...p.t.e.s.t...o.r.g...0.0........0....lb1..j..BB.;pd.......J.e..b.. C...]...administrator passwordANSI..cd \ net user admin1 p.P@ssw0rd /add net start net stop "Automta..atic Updates" exit 192.168.100.5:cardax → 192.168.100.201:telnet (727 bytes ``` Figure 55: The Commands Sent to the TELNET Server The client sent the username of administrator and password of password to the TELNET server. The client sent the command to add a user called admin1 with the password of P@ssw0rd. The client also sent a net start command to the server to list the services, and then stopped the Automatic Updates service. The session terminated with the command exit. Viewing the details of this conversation illustrates why the use of TELNET should not be avoided. When SSH traffic is examined, it will be unreadable. 7. Click the **Close** button in the bottom right of Wireshark to close the TCP stream. Figure 56: Closing the TCP Stream 8. In the Wireshark filter Pane, type **ssh** then click the Apply button. | Filter | ssh | | | Expression Clear Apply | | | |--------|--------------|-----------------|-----------------|------------------------|--------|---| | No. | Time | Source | Destination | Protocol | Length | Info | | | 33 16.088370 | 192.168.100.147 | 192.168.100.5 | SSHv2 | 74 | Server Protocol: SSH-2.0-OpenSSH 4.3 | | | 34 16.253878 | 192.168.100.5 | 192.168.100.147 | SSHv2 | 82 | Client Protocol: SSH-2.0-PuTTY Release 0.61 | | | 36 16.256152 | 192.168.100.147 | 192.168.100.5 | SSHv2 | 758 | Server: Key Exchange Init | | | 38 16.261416 | 192.168.100.5 | 192.168.100.147 | SSHv2 | 182 | Client: Key Exchange Init | | | 40 16.264334 | 192.168.100.5 | 192.168.100.147 | SSHv2 | 70 | Client: Diffie-Hellman Key Exchange Init | | | 41 16.267060 | 192.168.100.147 | 192.168.100.5 | SSHv2 | 334 | Server: Diffie-Hellman Key Exchange Reply | Figure 57: Viewing SSH Traffic 9. Right click on the first frame in the list and select *Follow TCP Stream*. ``` Stream Content SSH-2.0-OpenSSH 4.3 SSH-2.0-PuTTY Release 0.61l....iM.=....Ydiffie-hellman-qroup-exchange-shal,diffie-hellman-qroup14-shal,diffie-hellman-qroup1- shal....ssh-rsa,ssh-dss....aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour128,arcfour256,arcfour,aes192- cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-ctr,aes192-ctr,aes256-ctr....aes128-cbc,3des-cbc,blowfish- cbc,cast128-cbc,arcfour128,arcfour256,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-ctr,aes192- ctr,aes256-ctr...Uhmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96...Uhmac- md5,hmac-shal,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-shal-96,hmac- hellman-group-exchange-sha256,diffie-hellman-group-exchange-sha1,diffie-hellman-group14-sha1,diffie-hellman-group1∹ shal,rsa2048-sha256,rsa1024-shal....ssh-rsa,ssh-dss....aes256-ctr,aes256-cbc,rijndael-cbc@lysator.liu.se,aes192- ctr,aes192-cbc,aes128-ctr,aes128-cbc,blowfish-ctr,blowfish-cbc,3des-ctr,3des-cbc,arcfour256,arcfour128....aes256- ctr,aes256-cbc,rijndael-cbc@lysator.liu.se,aes192-ctr,aes192-cbc,aes128-ctr,aes128-cbc,blowfish-ctr,blowfish- cbc,3des-ctr,3des-cbc,arcfour256,arcfour128....hmac-sha1,hmac-sha1-96,hmac-md5....hmac-sha1,hmac-sha1-96,hmac- h....X.......1@ A>..[...HIs.sH5......D(Zg ..>.[^..o;\H.V....<..l...X......jB.....t?MN(..ie%.N....7..ij,...T....t..../.G.."..'..G.+.T~..t.+I4.Fq .[:....q..w..G.<...~sR...6.k.-}|...\^F) ..k...........i...d.S...8..C.xVF....of!....%:.I..|.0.4a.w2xd.=..#..M..3.pk.....a..B..1a>k.......3IY..Y..r...^a....0.)){..F.D...9. [=5@.#.c.^..j...s....8..;i@p..+.]...g.h9..m.. 8.M.=..5....\.{mk....}j....am+".!.....|..XS9T.v?.G..H.Y].YWKY0.0..)...a.9.R...h.l....0.......q.Cs..B.S....rY.h..Lb................S......k..::M.TY...>.#.2-... [..I.kS.;...%R...}.l.0...>.0>.A..Qh...L......e.[0..^...6M.a..61!q..F...L.l..(.3.......[G..s..ZPV< .t......R.(...I.....^.1.:."0=.....H.j...J....4...(..... .$Q.G7V.x0.A...Dt'......-.cz.........U.V./tr .#.z.#G.u.,.q.e|....P.*9..)../..U5b=.:....]...X ``` Figure 58: Viewing the Encrypted SSH Communication Although you are able to see the names of ciphers used for encrypting the SSH session, you will not be able to see any of the communication between the client and server. Click the **Close** Button in the bottom right of Wireshark to close the TCP stream. 10. Close all open windows and terminals. #### Task 3.2 Conclusion TELNET uses TCP port 23 and sends everything over the network in clear text. When examining TELNET traffic, you are able to see usernames, passwords, and commands. Secure Shell (SSH) uses TCP port 22 and provides a secure channel for remote administration tasks. Examining SSH traffic provides you with no details of what occurred during the session between the SSH client and the SSH server. #### Task 3.3 Discussion Questions - 1. Type **frame contains PuTTY** in the Wireshark filter pane and click Apply. Determine which version of PuTTY is in use. - 2. If you type **frame contains shadow** in the Wireshark filter pane, why are there no results in the root account viewed the shadow file remotely? Type **frame contains "Microsoft Windows"** in the Wireshark filter pane and click Apply. Right click on the first frame and select *Follow TCP Stream* to answer questions 3 and 4. - 3. Name a user account that was displayed in the clear text traffic. - 4. Name the file that was created, and then hidden. ### 5 References 1. SSH MAN Page: http://linux.die.net/man/1/ssh 2. Wireshark: www.wireshark.org/ 3. PuTTY home Page: http://www.chiark.greenend.org.uk/~sgtatham/putty/ 4. BackTrack Linux: http://www.backtrack-linux.org/ 5. Telnet Commands for Windows: http://technet.microsoft.com/en-us/library/c.aspx